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When quantifying the topological properties of a metric dataset using persistent 
homology, the first step is to produce a simplicial filtration on the data. The Čech 
and Vietoris-Rips filtrations are two of the workhorses of persistent homology, 
but over time, various other filtrations which capture different properties of 
data or have different computational burdens have been introduced. Towards 
a program of characterizing all the possible simplicial filtrations on a metric 
dataset, we introduce and develop the framework of valuation-induced stable 
filtration functors. This framework is based on the concept of curvature sets due 
to Gromov, and encapsulates the Vietoris-Rips and various other filtrations while 
simultaneously providing a model for generating families of novel filtration functors 
that capture diverse features present in datasets. We further extend this foundation 
by incorporating the notion of basepoint-dependent filtration functors and proving 
the associated functoriality and stability properties. This rich theoretical framework 
provides a unifying language for various extant simplicial filtrations, and is also 
a mechanism for generating arbitrarily large families of novel filtration functors 
with control over basepoint dependence/independence as well as the locality of the 
filtration. We exemplify our constructions on both toy datasets and on 3D shapes 
from a publicly available shape database. Our paper is accompanied by a Matlab 
software package incorporating an interactive platform for visualizing and testing 
new filtrations on datasets.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Persistent homology (PH) is a data analysis technique for estimating the geometric and topological fea-
tures of datasets at a range of scale parameters. In the last few decades, PH has become a widely recognized 
tool in computational topology and topological data analysis [1–5]. The PH pipeline is summarized below:
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Dataset (finite metric space) → Filtered simplicial complex → Persistence diagram/barcode.

Here the first arrow represents a filtration map that builds a simplicial structure on the finite metric space 
at a range of scale parameters. The second arrow represents the homology functor (with field coefficients), 
which tracks the topological features of the simplicial structure across a range of scales. These features are 
summarized as persistence diagrams or barcodes [4,5]. The Čech and Vietoris-Rips (VR) filtrations are the 
main methods for filtering datasets due to their interpretability [3]. These filtration maps are functorial, i.e. 
compatible metric spaces are mapped to compatible filtered spaces.

The notion of stability guarantees that if two datasets have similar geometric structure (independent of 
sample sizes), then their persistence diagrams should be similar. Stability is determined by quantifying dif-
ferences between finite metric spaces (M) and comparing them to differences between persistence diagrams 
(D). The former is given by the Gromov-Hausdorff distance dGH, a distance in the category of compact 
metric spaces [6]. The standard method for the latter is the bottleneck distance dB, a distance between 
diagrams [3]. In particular, both the Vietoris-Rips and Čech filtration functors are stable [7,8]:

Theorem 1. For X, Y finite metric spaces, all k ∈ Z+, and Φ either the Čech or the VR filtration,

dB(dgmΦ
k (X),dgmΦ

k (Y )) ≤ 2 · dGH(X,Y ).

This result carries two primary interpretations. On one hand, two datasets that have similar shape should 
induce similar barcodes, offering the possibility of analyzing shape through a careful interpretation of the 
diagrams. On the other hand, one can regard the distance between diagrams as an approximation from 
below of dGH. Computing the Gromov Hausdorff distance is an NP-hard problem [9], while the bottle-
neck distance can be calculated in polynomial time [10]. Thus, instead of the computationally impractical 
Gromov-Hausdorff distance, one uses the approximation of dGH from dB as a classifier for applying clustering 
methods and machine learning [7].

The preceding theorem suggests the following question: does there exist a filtration functor Φ (of up to 
NP-hard complexity) and k ∈ {0, 1, 2, . . .} such that the map dgmΦ

k is an isometric embedding of M into 
D? Our first result (Proposition 16) shows the impossibility of having such a filtration functor. However, by 
relaxing our requirement of having a single filtration functor, we find (Theorem 17) a family (Φα)α of stable 
filtration functors such that for every pair of spaces X, Y ∈ M, there is a functor Φα attaining dGH(X, Y )
through the bottleneck distance between the corresponding 0-dimensional diagrams. This family is of course 
computationally intractable unless P=NP, but Theorem 17 suggests that to approximate dGH between two 
metric spaces, one should generate “large” families of filtrations on the spaces. This approach follows the 
ideas espoused in [11–13]. In the setting of inverse problems, i.e. generating families of filtrations that can 
reconstruct a metric space up to isometry, there is a growing body of literature—see [14–20].

The main goal of this article is to create a framework for producing new filtration functors that satisfy 
a stability property such as the one seen in Theorem 1, that provide new approximations to dGH for 
classification purposes, and that capture different geometric and topological features than the Čech and 
Vietoris-Rips filtrations. This is part of a larger program of characterizing all the possible filtration functors 
acting on metric spaces.

1.1. Overview of our results

We start by recalling the notion of curvature sets, which form a full invariant for a metric space [21, 
Theorem 3.271

2 ]. We then define a new concept: valuations, which are real-valued functions on sets of 
metric matrices (Definition 20). We prove that valuations induce filtration functors, which we call local 
filtration functors. This framework allows us to prove that by imposing a stability property on valuations, 
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we guarantee the stability of the filtration functor induced by the valuation (Theorem 26). We further show 
that any Lipschitz function f : Rn×n → R generates a valuation which in turn induces a stable filtration 
functor (Proposition 27).

By analogy with the Vietoris-Rips filtration, which is tightly related to the metric notion of diameter, 
we define and study a filtration produced via ultrametricity [22], which measures how far a dataset is from 
having an ultrametric (i.e. tree-like) structure. In addition to proving and conjecturing various theoretical 
results on the ultrametricity barcodes of particular spaces, we show via computational experiments that 
the ultrametricity filtration may be more discriminative than the Vietoris-Rips filtration when comparing 
groups of phylogenetic datasets.

Filtrations that emphasize geometric properties of specific regions in a dataset are becoming increasingly 
important. For example, the authors of [23] considered the (superlevel set) filtrations of a metric graph 
(G, dG) induced by the collection {dG(p, ·) : p ∈ G}, proved stability, and demonstrated its use on datasets. 
This idea was further studied in [15] from the perspective of reconstructing metric graphs. In line with these 
ideas, we define basepoint filtration functors (Definition 40), which are filtrations depending on a choice of 
basepoint that provides a local perspective on the dataset. This framework generalizes standard filtration 
functors, since any filtration can be regarded as a constant basepoint filtration on the points of the space. 
We develop procedures for defining new basepoint filtration functors by adjusting the notion of valuation 
(Definition 47).

We prove that stable behavior of an adjusted valuation induces stability of the induced basepoint fil-
tration (Theorem 49). This is the most general stability theorem proved in this article. We also prove in 
Proposition 50 that basepoint filtrations induced by adjusted valuations are stable with respect to slight 
changes in basepoint, that is, two nearby basepoints generate similar barcodes. We then develop a specific 
basepoint filtration functor called the eccentricity basepoint filtration in Example 51, and use this filtration 
for computational examples on particular datasets to provide both intuition on how basepoint filtrations 
operate, and topological interpretability of this specific filtration functor.

Software packages for both the ultrametricity and eccentricity basepoint filtrations are available on 
https://github .com /NateClause. In particular, the eccentricity filtration package provides an interactive 
user interface for easy experimentation on datasets.

1.2. Organization of the paper

Section 2 contains the necessary background. Section 3 contains two results motivating the perspective 
presented in this paper. In Section 4 we define valuations and present stability results, a method for gen-
erating valuations, and a particular example—the ultrametricity filtration functor. In Section 5 we further 
generalize our framework via the notion of basepoint filtration functors and present the eccentricity base-
point filtration functor. Theorem 49 in this section provides the most general stability result of the paper. 
Finally in Section 6 we describe our computational examples.

2. Preliminaries

By R+, Z+ we denote the non-negative reals/integers. For a set X, we let pow(X) denote the set of all 
finite, non-empty subsets of X. By M we denote the collection of all finite metric spaces. The Hausdorff 
distance between closed subsets of a metric space is denoted by dH. It is given as follows: for A, B subsets 
of a finite metric space X (which are always closed),

dH(A,B) := max
(

max min dX(a, b), max min dX(a, b)
)
.

a∈A b∈B b∈B a∈A

https://github.com/NateClause
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Given a finite metric space (X, dX) we consider the map ιX : pow(X) → M given by σ �→ (σ, dX |σ×σ), i.e. 
ιX takes a subset of X and endows it with the restriction of the metric of X. By the diameter diam(X)
of a finite metric space (X, dX) we mean the number maxx,x′∈X dX(x, x′), and by the eccentricity function 
associated to (X, dX) we mean the function eccX : X → R+ given by x �→ maxx′∈X dX(x, x′). For two 
metric spaces (X, dX) and (Y, dY ), we say that X embeds into Y isometrically, denoted X ↪→ Y , if there is 
a subset Z ⊂ Y and a function h : X → Z such that h is a distance-preserving bijection.

Throughout this article, we will use homology with field coefficients. We write Hk to denote the kth 
simplicial homology functor; refer to [24] for background on simplicial homology.

Given two finite metric spaces (X, dX) and (Y, dY ) and any non-empty relation R ⊂ X × Y we consider 
its distortion [6] given by

dis(R) := max
(x,y),(x′,y′)∈R

|dX(x, x′) − dY (y, y′)|.

A particular class of relations between sets X and Y is given by correspondences: these are relations 
R such that the canonical projection maps are surjective. We denote by R(X, Y ) the set of all cor-
respondences between X and Y . The Gromov-Hausdorff distance between X, Y ∈ M is defined as 
dGH(X, Y ) := 1

2 min
R∈R(X,Y )

dis(R).

Definition 2 ([21]). Given a metric space (X, dX) and n ∈ N consider the map D(n)
X : Xn → Rn×n given 

by (x1, . . . , xn) �→
(
dX(xi, xj)

)n
i,j=1. The n-th curvature set of (X, dX) is the collection of n × n matrices 

Kn(X) := im(D(n)
X ).

As an example, consider the three point space X with distances dX =
(

0 1 2
1 0 1
2 1 0

)
. Then the first three 

curvature sets are:

K1(X) = {( 0 )} ,K2(X) =
{( 0 1

1 0

)
,
( 0 2

2 0

)
,
( 0 0

0 0

)}
,

K3(X) =
{(

0 1 2
1 0 1
2 1 0

)
,

(
0 2 1
2 0 1
1 1 0

)
,

(
0 1 1
1 0 2
1 2 0

)
,

(
0 0 2
0 0 2
2 2 0

)
,

(
0 2 0
2 0 2
0 2 0

)
,

(
0 2 2
2 0 0
2 0 0

)
,

(
0 0 1
0 0 1
1 1 0

)
,

(
0 1 0
1 0 1
0 1 0

)
,

(
0 1 1
1 0 0
1 0 0

)
,

(
0 0 0
0 0 0
0 0 0

)}
.

Remark 3. Curvature sets enjoy the following type of functoriality: suppose X ↪→ Y isometrically, then, for 
any n ∈ N one has Kn(X) ⊂ Kn(Y ).

In (Rn, �∞), curvature sets are stable with respect to the Gromov-Hausdorff distance.

Theorem 4 ([25]). For any pair of compact metric spaces, and all n ∈ N,

d
(Rn×n,�∞)
H (Kn(X),Kn(Y )) ≤ 2 · dGH(X,Y ).

2.1. Filtrations, filtration functors, and their stability

Filtrations on finite metric spaces are defined as below.

Definition 5. Let X be a finite set. A filtration on X is any map ΦX : pow(X) → R which satisfies the 
monotonicity condition: ΦX(τ) ≤ ΦX(σ), for all τ ⊂ σ ⊂ X.
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Fig. 1. A persistent homology method (shown here as a composite map dgm∗
k) maps finite metric spaces M to the space of all 

filtered spaces F , then to persistent vector spaces V, and finally to the space of diagrams/barcodes D. Our goal is to understand 
the structure of the maps shown in red, i.e. the filtration functors M → F . (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Any pair (X, ΦX) where X is a finite set and ΦX is a filtration over X will be called a filtered space. An 
element σ of pow(X) will be referred to as a simplex and the value of ΦX(σ) will be its filtration value. 
The collection of all such pairs will be denoted by F . A filtered space (X, ΦX) is naturally associated to 
a simplicial filtration. For each t ∈ R, consider the (sublevel) set ΦX [t] = {σ ∈ pow(X) : ΦX(σ) ≤ t}. 
The monotonicity condition guarantees that ΦX [t] is a simplicial complex at any t ∈ R. As t → ∞, this 
complex ΦX [t] grows until it becomes the full simplicial complex over X. Applying the kth homology functor 
Hk : F → V transforms this filtration {ΦX [t] ⊂ ΦX [t′]}t≤t′ into a sequence of vector spaces with linear 
maps, i.e. a persistent vector space.

More generally, a persistent vector space is a family of vector spaces U = {Uδ
μδ,δ′−−−→ U δ′}δ≤δ′ such that: 

(1) μδ,δ is the identity for each δ ∈ R, and (2) μδ,δ′′ = μδ′,δ′′ ◦ μδ,δ′ for each δ ≤ δ′ ≤ δ′′. Furthermore, 
we make the additional assumption that all vector spaces are finite dimensional: (3) dim(Uδ) < ∞ for all 
δ ∈ R. The latter assumption is often referred to as tameness [26]. To each persistent vector space, it is 
then possible to associate a full invariant called a persistence diagram or persistence barcode [26]. We let 
dgm : V → D denote the diagram map that maps a persistent vector space to its barcode. Given a filtered 
space (X, ΦX) we define dgmΦX

k (X) to be the k-th dimensional persistence diagram of (X, ΦX).
The space D of all persistence diagrams comes equipped with the so called bottleneck distance dB :

D ×D → R+. We refer the reader to [3] for its definition.
Throughout this work, we will restrict our scope to filtrations with non-negative filtration values. To be 

precise, for (X, ΦX) ∈ F and σ ⊂ X, ΦX(σ) ≥ 0.
It is possible to define a distance dF between filtered spaces as follows [27]: given (X, ΦX) and (Y, ΦY )

in F , let

dF ((X,ΦX), (Y,ΦY )) := inf
Z,πX ,πY

max
σ⊂Z

|ΦX(πX(σ)) − ΦY (πY (σ))|, (1)

where Z is any finite set where πX and πY are surjective maps from Z to X and Y , respectively. The 
following is a technical result that will be useful in this paper:

Theorem 6 ([27]). For all finite filtered spaces (X, ΦX), (Y, ΦY ) ∈ F , and all k ∈ Z+,

dB(dgmΦX

k (X),dgmΦY

k (Y )) ≤ dF ((X,ΦX), (Y,ΦY )).

Theorem 6 establishes the stability of the map dgm ◦ Hk : F → D for all k ∈ Z+. Observe from Fig. 1
that the complementary portion of the persistent homology pipeline consists of the filtration maps from 
finite metric spaces to filtered spaces. We want a process for generating stable maps from the category of 
finite metric spaces to the category of filtered spaces. Towards this end, we start by describing category 
structures on M and F .
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Definition 7. By Miso we denote the category with M as objects, and isometric embeddings as morphisms. 
We impose a category structure on F by specifying the arrows: these are the maps h : (X, ΦX) → (Y, ΦY )
such that for any σ ⊂ X, we have ΦX(σ) ≥ ΦY (h(σ)).

Definition 8. We say that a filtration map Φ : M → F is functorial on Miso if for all pairs of spaces 
X, Y ∈ M and any isometric embedding h : X → Y , ΦX(σ) ≥ ΦY (h(σ)) for all σ ⊂ X. We also call Φ an 
Miso-filtration functor.

Remark 9. By defining morphisms to be 1-Lipschitz functions instead of isometries, one obtains another 
interesting category structure on M, denoted MLip. Interestingly, the “valuation-induced filtrations” we 
consider in this work are not all MLip-functorial. However, under certain assumptions, we can obtain MLip-
functoriality, and it turns out that these “valuation-induced filtrations” differ from the VR-filtration by a 
1-Lipschitz map. We do not include these results in the current paper, as they are in a somewhat different 
direction.

Remark 10. One may ask if the inequalities in the preceding definitions may be reversed in a meaningful 
way. We say that a filtration map Φ : M → F is a contravariant Miso filtration functor if for the isometric 
embedding h : X → Y , we have ΦX(σ) ≤ ΦY (h(σ)) for σ ⊂ X. When we do not specifically mention 
“contravariant”, it is understood that we are referring to the “covariant” case in the definitions above.

The filtration maps we consider in this work will be functorial on Miso, so we also make the following 
definition for convenience:

Definition 11. We say that Φ : M → F is a filtration functor if it is Miso-functorial.

Example 12. The Čech filtration functor ΦČ : M → F is defined as the map (X, dX) �→ (X, ΦČ
X), where 

ΦČ
X : pow(X) → R is given by

ΦČ
X(σ) := min

p∈X
max
x∈σ

dX(p, x), ∀X ∈ M, σ ⊂ X.

To see functoriality, let h : X → Y be an isometric embedding. Then we have:

ΦČ
X(σ) = min

p∈X
max
x∈σ

dX(p, x) ≥ min
p∈Y

max
x∈h(σ)

dY (p, x) = ΦČ
Y (h(σ)).

Example 13. The Vietoris-Rips filtration functor ΦVR : M → F is the map (X, dX) �→ (X, ΦVR
X ), where

ΦVR
X (σ) := diam(ιX(σ)), ∀X ∈ M, σ ⊂ X.

Functoriality for ΦVR is clear, as the filtration value of a simplex does not depend on the ambient space for 
the Vietoris-Rips filtration. This property will be generalized in Section 4.

We now define stability of filtration functors.

Definition 14. We say that a filtration functor Φ : M → F is stable if there exists L ≥ 0 such that for all 
X, Y ∈ M,

dF ((X,ΦX), (Y,ΦY )) ≤ L · dGH(X,Y ).

If the above condition holds for a given L ≥ 0 we call Φ an L-stable filtration functor.
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Given any filtration functor Φ and k ∈ Z+, by dgmΦ
k we denote the composite map

dgm ◦ Hk ◦ Φ : M → D.

Combining the stability of filtration functors with Theorem 6, one has the following:

Corollary 15 ([27]). Let L ≥ 0 and Φ : M → F be any L-stable filtration functor. Then for all k ∈ N and 
all X, Y ∈ M,

dB
(
dgmΦ

k (X),dgmΦ
k (Y )

)
≤ L · dGH(X,Y ).

3. An impossibility and an existence theorem

Our first result shows that there does not exist a single filtration functor that can achieve the Gromov-
Hausdorff distance between any two metric spaces. Here we restrict attention to filtration functors sharing 
the property of the Vietoris-Rips and Čech filtration functors that all 0-simplices have filtration value zero.

Proposition 16. Let Φ be any 1-stable filtration functor such that ΦX({x}) = 0 for all X ∈ M and 
x ∈ X. Let k ∈ {0, 1, 2, . . .}. Then there exist two different finite metric spaces X and Y such that 
dB(dgmΦ

k (X), dgmΦ
k (Y )) < dGH(X, Y ).

However, it is possible to find a family of filtrations achieving dGH.

Theorem 17. There exists a family of 1-stable filtration functors F such that

dGH(X,Y ) = sup
Φ∈F

dB
(
dgmΦ

0 (X),dgmΦ
0 (Y )

)
, for all X,Y ∈ M.

Remark 18. The theorem indicates that in order to fully capture geometric dissimilarity between finite 
metric spaces it is enough to only consider the case of 0-dimensional barcodes. However, this is merely an 
existence result: it does not offer guidance in terms of how the family F should be chosen for applications.

Prior to proving these statements, we review the notion of homothetic spaces. Two spaces (X, dX), (X, d′X)
are said to be homothetic if d′X = λ · dX for some λ ≥ 0. Such spaces are related by the following equality 
[25, Example 3.3]:

dGH((X, dX), (X,λ · dX)) = |λ−1|
2 diam(X, dX).

We now proceed to the proofs.

Proof of Proposition 16. Suppose first that k ≥ 1. Towards a contradiction, let Φ : M → F be a 1-stable 
filtration functor such that:

dGH(X,Y ) = dB(dgmΦ
k (X),dgmΦ

k (Y )), ∀X,Y ∈ M.

Let X ∈ M be the discrete 2-point space with unit distance, and let ∗ ∈ M be the 1-point space. The only 
correspondence between X and ∗ is the product X × ∗. Then,

dGH(X, ∗) = 1
2dis(X × ∗) = 1

2 max
′

|dX(x, x′) − d∗(∗, ∗)| = 1
2diam(X) = 1

2 .
(x,∗),(x ,∗)∈X×∗
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Both X and ∗ have trivial persistent homology in dimensions greater than 0. Thus we have:

1
2 = dGH(∗, X) = dB(dgmΦ

k (∗),dgmΦ
k (X)) = dB(∅, ∅) = 0.

Here the second equality holds by assumption. This is a contradiction, so such a Φ does not exist.
Next we consider the case k = 0. Towards a contradiction, let Φ : M → F be a 1-stable filtration functor 

such that:

dGH(X,Y ) = dB(dgmΦ
k (X),dgmΦ

k (Y )), ∀X,Y ∈ M.

We proceed by first characterizing the persistence diagram of a two-point space for different interpoint 
distances. For each r > 0, let Xr := {0, r} ⊂ R be the space having two points at distance r from each 
other. By assumption, ΦXr

({0}) = ΦXr
({r}) = 0. Then there exists f(r) > 0 such that,

dgmΦ
0 (Xr) = {[0,∞), [0, f(r))}.

Also it is clear that dgmΦ
0 (∗) = {[0, ∞)}. From this we see that,

dGH(Xr, ∗) = dB(dgmΦ
0 (X),dgmΦ

0 (∗)) = dB({[0,∞), [0, f(r))}, {[0,∞)}) = f(r)
2 .

Here the first equality holds by assumption. We know that dGH(X, ∗) = diam(X)
2 for all spaces X ∈ M. 

Thus we have dGH(Xr, ∗) = r
2 . It follows from the preceding computation that f(r) = r.

Now let 0 < ε < 1. Because X1 and X1+ε are homothetical spaces [25, Example 3.3], dGH(X1, X1+ε) = ε
2 . 

But the previous work shows that dB(dgmΦ
0 (X1), dgmΦ

0 (X1+ε)) = dB({[0, ∞), [0, 1)}, {[0, ∞), [0, 1 + ε)}) =
ε = ε

2 = dGH(X1, X1+ε). We conclude from this contradiction that such a filtration functor Φ does not 
exist. �
Proof of Theorem 17. For each Z ∈ M we define the filtration functor Υ(Z) : M → F given by X �→ Υ(Z)

X , 
where

Υ(Z)
X (σ) := dGH(X,Z) ∀σ ⊂ X ∈ M.

This filtration is constant on simplices. At the simplicial level, it yields an empty simplicial complex on 
the interval [0, dGH(X, Z)), and the complete simplicial complex, i.e. the power set of X, on the interval 
[dGH(X, Z), ∞). Thus dgmΥ(Z)

0
(
X
)

= {[dGH(X,Z),∞)}.
By the definition of the bottleneck distance [3] and the triangle inequality,

dB

(
dgmΥ(Z)

0 (X),dgmΥ(Z)

0 (Y )
)

= |dGH(X,Z) − dGH(Y,Z)| ≤ dGH(X,Y ).

This holds for all X, Y, Z ∈ M, thus all functors in F are 1-stable.
Since dGH(Y, Y ) = 0, it follows that

dB

(
dgmΥ(Y )

0 (X),dgmΥ(Y )

0 (Y )
)

= dGH(X,Y ) ∀X,Y ∈ M.

We conclude that,

dGH(X,Y ) = sup
Z∈M

dB

(
dgmΥ(Z)

0 (X),dgmΥ(Z)

0 (Y )
)

∀X,Y ∈ M.

Setting F :=
{
Υ(Z) : M → F : Z ∈ M

}
gives us the required family. �
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Remark 19. See [11, Theorem 15] for a related result in the category of topological spaces.

The proof of this theorem exhibits a family F which recovers the Gromov-Hausdorff distance through the 
bottleneck distances induced by the filtration functors in F. The family F is not suitable for applications, 
since for any X ∈ M and ΥZ ∈ F, computing dgmΥZ

0 (X) requires computing dGH(X, Z). Thus the filtration 
functors in F do not reduce the computational problem of estimating dGH. The theorem does, however, 
guarantee the existence of families of filtration functors that recover the Gromov-Hausdorff distance. Such 
a theorem motivates identifying families of stable filtration functors that are sufficiently rich in terms of the 
metric information they capture.

4. Valuations

In this section we introduce the notion of a valuation, which is our main tool for defining families of 
filtration functors.

4.1. Definition and stability

The n-th curvature set Kn(X) of a metric space X contains all the metric information about n-tuples of 
points in X. One possibility for inducing a filtration on X is to use the information in Kn(X). This requires 
us to specify a rule that assigns a real number to elements of pow(Rn×n). This is done via the notion of 
valuations.

Definition 20 (Valuation). Given n ∈ N, an n-valuation is any map νn : pow(Rn×n) → R such that νn is 
monotonic, meaning that νn(A) ≤ νn(B) for all A ⊂ B ∈ pow(Rn×n). We will denote by Vn the set of all 
n-valuations.1

We are interested in defining filtrations through valuations. Monotonicity is imposed on valuations so 
that they induce filtrations.

Definition 21 (Filtration functor induced by a valuation). Given n ∈ N and any νn ∈ Vn we induce the 
filtration functor Φνn : M → F by writing:

Φνn

X (σ) := (νn ◦ Kn ◦ ιX)(σ), ∀X ∈ M, ∀σ ⊂ X.

We write Φνn to denote the filtration functor induced by νn.

Lemma 22. Φνn is a well-defined filtration map that is functorial on Miso.

Proof. Let νn ∈ Vn be a valuation. Let X ∈ M and τ ⊂ σ ⊂ X. By Remark 3, τ ⊂ σ implies Kn(ιX(τ)) ⊂
Kn(ιX(σ)). Since νn is monotonic,

Φνn

X (τ) = νn(Kn(ιX(τ))) ≤ νn(Kn(ιX(σ))) = Φνn

X (σ).

Thus, Φνn

X is a filtration on X and Φνn is a filtration map. To see Miso-functoriality, let h : X → Y be an 
isometric embedding. Then in fact we have the following equality:

Φνn

X (σ) = νn(Kn(ιX(σ))) = νn(Kn(ιY (h(σ)))) = Φνn

Y (h(σ)). �
1 Our use of the term valuation deviates from the usual meaning: we do not assume modularity [28].
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Definition 23. A filtration functor Φ : M → F is local if for some n ∈ N there exists a valuation νn ∈ Vn

such that Φ = Φνn , in which case we say that Φ is a n-local filtration functor. If no such n exists then we 
say that Φ is global.

Remark 24. We make the following remarks:

1. Notice that if the filtration functor Φ is n-local then it is n′-local for all n′ ≥ n. By convention, whenever 
we say a filtration functor is n-local, we are referring to the minimal n for which this is true.

2. The Vietoris-Rips filtration functor is 2-local. Note that for any X ∈ M and σ ⊂ X:

ΦVR
X (σ) = diam(σ) = max

{x,x′}⊂σ
dX(x, x′) = max

α∈K2(ιX(σ))
max
i,j

αij .

In words, the filtration value of a simplex under the Vietoris-Rips filtration functor depends only on the 
pairwise distances between points in the simplex, which is information contained in K2(σ). A 2-valuation 
ν2 generates the Vietoris-Rips filtration functor: ν2(A) := max

α∈A
‖α‖∞ for all A ∈ pow(R2×2).

3. The Čech filtration functor is not local. To show this, we use a counterexample: Let (P, dP ) be the metric 
space consisting of three equidistant points P = {p1, p2, p3} at distance 2 from each other. Let (Q, dQ)
be the metric space consisting of four points Q = {q0, q1, q2, q3} where the metric is given by the matrix

dQ =
( 0 1 1 1

1 0 2 2
1 2 0 2
1 2 2 0

)
.

Since the subset S = {q1, q2, q3} ⊂ Q and P are isometric, Kn(ιQ(S)) = Kn(P ) for all n ∈ N. If the 
Čech functor were n-local for some n ∈ N, then there would exist νn ∈ Vn such that 1 = ΦC

Q(S) =
νn(Kn(ιQ(S))) = νn(Kn(P )) = ΦC

P (P ) = 2, which yields a contradiction.
4. All local filtration maps are Miso-functorial. This follows from Lemma 22.

We now restrict to a suitable class of valuations that yield stable filtration functors.

Definition 25. Let n ∈ N and let νn ∈ Vn. Given L ≥ 0, we say that νn is L-stable if:

|νn(A) − νn(B)| ≤ L · d(Rn×n,�∞)
H (A,B), for all nonempty A,B ⊂ Rn×n.

We denote by VL
n the subset of Vn consisting of all L-stable n-valuations.

By invoking Theorem 6 and the stability of the Kn map (cf. Theorem 4), we obtain:

Theorem 26. Let n ∈ N and L > 0. Then for any νn ∈ VL
n , one has:

dB

(
dgmΦνn

k (X),dgmΦνn

k (Y )
)
≤ 2L · dGH(X,Y ), ∀X,Y ∈ M, ∀k ∈ N.

We omit the proof, as it will follow from a more general result (Theorem 49).

4.2. Max-induced valuations

Thus far we have discussed the definition and properties of valuations, and here we provide a simple way 
of generating valuations. As we show below, any Lipschitz function can be used to generate valuations.
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Given a function f : Rn×n → R, we define its max-induced valuation or max-valuation, denoted νf , to 
be:

νfn(A) := max
α∈A

f(α), ∀A ∈ pow(Rn×n).

The valuations in this particular class are well behaved when imposing minimal conditions on the function 
that induces them. In particular, if we restrict our scope to functions that are Lipschitz with respect to the 
sup norm, we obtain a family of stable valuations.

Proposition 27. Let f : Rn×n → R be L-Lipschitz with respect to the �∞ norm on Rn×n. Then the max-
induced valuation νfn is L-stable.

Proof. Let A, B ∈ pow(Rn×n) and δ = d
(Rn×n,�∞)
H (A, B). Let α0 ∈ A such that f(α0) = νfn(A). There exists 

β0 ∈ B such that ‖α0 − β0‖∞ ≤ δ. From the Lipschitz continuity,

νfn(A) − νfn(B) ≤ f(α0) − f(β0) ≤ Lδ.

Following the symmetrical argument choosing β0 ∈ B,

|νfn(A) − νfn(B)| ≤ L · d(Rn×n,�∞)
H (A,B). �

In the next subsection we study a particular example of a filtration functor generated by a max-induced 
valuation: the ultrametricity filtration functor Φult.

4.3. The ultrametricity filtration functor

We now define a filtration based on ultrametricity, which is a measure of the defect of a metric from 
being ultrametric [29].

Definition 28. Let (X, uX) ∈ M be a metric space. Then uX is an ultrametric if:

uX(x1, x3) ≤ max{uX(x1, x2), uX(x2, x3)} ∀x1, x2, x3 ∈ X. (∗)

One significant property of ultrametric spaces is the following: if (X, uX) is ultrametric, then for all 
2-simplices σ ⊂ X, one can write σ = {x1, x2, x3} such that uX(x1, x2) = uX(x2, x3) ≥ uX(x1, x3). In 
other words, every triangle in an ultrametric space is isosceles, with two longest sides equal. This property 
actually characterizes ultrametric spaces, and is used in the following definition [22].

Definition 29 ([22]). Let X ∈ M. The ultrametricity of X is defined as

ult(X) := max
x1,x2,x3∈X

(dX(x1, x3) − max{dX(x1, x2), dX(x2, x3)}) .

We call ult : M → R the ultrametricity map. This naturally induces a filtration functor.

Definition 30 (Ultrametricity filtration functor). The ultrametricity filtration functor is the map Φult : M →
F given by writing Φult

X (σ) := ult(ιX(σ)) for each σ ⊂ X.

The map Φult is a well-defined filtration functor that satisfies 4-stability. All of this can be proved by 
showing first that it is 3-local.
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Proposition 31. Φult is a 3-local and 4-stable filtration functor, induced by the 2-stable valuation νult ∈ V3

given by writing νult(A) := maxα∈A(α13 − max{α12, α23}), for A ⊂ Rn×n.

Proof. Let us prove that Φult is a filtration generated by νult. For all X ∈ M and σ ⊂ X,

Φult
X (σ) = max

x1,x2,x3∈σ
(dX(x1, x3) − max{dX(x1, x2), dX(x2, x3)})

= max
α∈K3(ιX(σ))

(α13 − max{α12, α23}) = νult(K3(ιX(σ))).

Given A ⊂ B ∈ pow(Rn×n), we have νult(A) ≤ νult(B) because we take a max over a larger set. From this, 
Φult is a well-defined 3-local filtration. This valuation is max-induced by the function f : R3×3 → R given 
by f(α) = α13 − max{α12, α23}. Since f is 2-Lipschitz, by Proposition 27, νult is 2-stable. Let us denote 
the k-th dimensional persistence diagram map induced by Φult as dgmult

k . By applying Theorem 26, Φult is 
4-stable: for all k ∈ N and X, Y ∈ M,

dB

(
dgmult

k (X),dgmult
k (Y )

)
≤ 4 · dGH(X,Y ). �

Remark 32. There are other interesting features of this filtration that make it essentially different from the 
Vietoris-Rips or the Čech filtration functors. We list some in the following remarks:

1. For any two-point metric space P = {p1, p2} with distance dP , one has ult(P ) = 0. Then, for any 
X ∈ M, every 1-simplex of pow(X) has filtration value 0. This implies that dgmult

0 (X) = {[0, ∞)} for 
any X ∈ M.

2. For a space X ∈ M and a simplex σ ⊂ X the filtration value of σ with respect to Φult equals 
maxx1,x2,x3∈σ ult(ιX({x1, x2, x3})). From this, for all t ∈ R+, Φult[t] is the flag complex generated 
by {τ ⊂ X : τ a 2-simplex, Φult

X (τ) ≤ t}. This means that at all time Φult
X [t] is the flag complex of the 

2-skeleton of Φult
X [t]. This draws a parallel between Φult and ΦVR, since for all t ≥ 0 ΦVR

X [t] is the flag 
complex generated by the 1-skeleton of ΦVR

X [t].
3. Despite this parallel structure, Φult appears to be more informative than ΦVR for certain datasets arising 

in phylogenetics, as we show in Section 6.1.2.

Example 33. Using Remark 32, we now construct examples of metric spaces with nontrivial 1 and 2-
dimensional persistence with respect to Φult. Illustrations are provided in Fig. 2. First let X ′ = {p1, p2, p3}
be a three point metric space corresponding to an isosceles triangle with two shortest sides equal, each having 
length α. Let the length of the longest side be β. Then ult(X ′) = β−α > 0, and we can force this quantity to 
be arbitrarily large. Thus dgmult

1 (X ′) consists of a single bar [0, ult(X ′)). Next we obtain X from X ′ by “glu-
ing in” three metric spaces X1, X2, X3, each having diameter � α, to the three points of X ′. The metric on 
X is given as follows: for any xi ∈ Xi and xj ∈ Xj , define dX(xi, xj) := dXi

(xi, pi) +dX′(pi, pj) +dXj
(pj , xj). 

Then X is a metric space of arbitrary cardinality having arbitrarily long bars in dgmult
1 .

Next let Y ′ = {q1, q2, q3} be an isosceles right triangle in the plane, with q1, q3 the endpoints of the 
hypotenuse. Let m denote the midpoint of the hypotenuse; then m is equidistant to each qi, qj pair. Next 
let Y be the suspension of Y ′ obtained by adjoining a, b above and below m at sufficiently large distance so 
that ult(ιY (a, qi, qj)) = 0 for each i, j ∈ {1, 2, 3}, and likewise for b. Then in the ultrametricity filtration, 
the 2-simplices [a, qi, qj ], [b, qi, qj ] enter at time 0, and they form a 2-cycle that remains alive until the 
entry of [a, qi, qj , qk], [b, qi, qj , qk]. This happens when [qi, qj , qk] enters, which is controlled by ult(Y ′). Thus 
dgmult

2 (Y ) is nontrivial. A similar gluing procedure as in the case of X above can be carried out to extend 
this example to metric spaces with arbitrary cardinality having arbitrarily long bars in dgmult

2 .
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Fig. 2. Illustrations of the metric spaces in Example 33 with nontrivial dgmult
k , for k = 1, 2.

In Section 6.1.2, we demonstrate some practical applications of Φult. These computational experi-
ments demonstrate cases where the ultrametricity filtration provides more persistence information than 
the Vietoris-Rips filtration. In addition to empirical applications on finite metric spaces, we have observed 
that Φult yields surprising results for path connected metric spaces such as the circle S1. Notably, we find 
that dgmult

1 is trivial for path connected metric spaces (this subsumes the S1 case). Computational experi-
ments suggest that for a collection of standard path connected metric spaces dgmult

2 is trivial. In contrast, 
computational results suggest that dgmult

3 (S1) consists of a single bar [0, 2π7 ).

Proposition 34. Let (X, dX) be a path connected metric space. Then dgmult
1 (X) is trivial.

To prove this proposition, we first provide the following lemma. The proof of the lemma requires two 
applications of the special property that all 1-simplices enter at time 0 in the ultrametricity filtration.

Lemma 35. Let (X, dX) be a path connected metric space, and consider the 1-cycle σ := [v0, v1] + [v1, v2] +
[v2, v0] where v0, v1, v2 ∈ X. Let ε > 0. Then σ becomes a 2-boundary by time ε under the ultrametricity 
filtration.

Proof. Let ε > 0 be given. Fix a continuous curve γ connecting v1, v2. We fix n ∈ N such that we can select 
consecutive points v1 = x0, x1, . . . , xn = v2 with xi on γ for 0 ≤ i ≤ n and dX(xi, xi+1) < ε. Fix such a 
choice x1, x2, . . . , xn−1. Then consider the 2-chain τ :=

∑n−1
i=0 [v0, xi, xi+1]. We first claim that τ will appear 

in the ultrametricity filtration by time ε. To see this, we consider the ultrametricity of each 2-simplex in 
the sum.

Let 0 ≤ i ≤ n − 1, and let di := dX(v0, xi). By the triangle inequality we know that di < di+1 + ε

and likewise di+1 < di + ε. This gives |di − di+1| < ε. We know the ultrametricity of τi := [v0, xi, xi+1] is 
given as the difference of the two largest distances between the vertices. If these two largest distances are 
di and di+1, then by the above, ult(τi) < ε. The only other case is if one of the two largest distances in the 
2-simplex is dX(xi, xi+1). Without loss of generality, let di be one of the other two largest distances. But 
as one of the two largest distances is dX(xi, xi+1), we know di+1 < dX(xi, xi+1) < ε, and so by the triangle 
inequality and the preceding observations,

di < di+1 + ε =⇒ di < dX(xi, xi+1) + ε =⇒ di − dX(xi, xi+1) < ε



14 S. Chowdhury et al. / Topology and its Applications 279 (2020) 107254
But then as dX(xi, xi+1) < ε already, we also have dX(xi, xi+1) − di < ε, and so |dX(xi, xi+1) − di| < ε, 
meaning in either case we get ult(τi) < ε.

So we have that each τi appears by time ε. Thus the entire 2-chain τ appears by time ε. Now we can 
compute σ′ := ∂τ = [v0, v1] +[v2, v0] +

∑n−1
i=0 [xi, xi+1]. This is not σ, but we claim that σ′, σ are homologous. 

To see this, observe that σ, σ′ differ by the boundary of the 2-chain 
∑n−1

i=1 [x0, xi, xi+1]. Then following the 
analogous case argument from above, we get that each 2-simplex [x0, xi, xi+1] appears in the ultrametricity 
filtration by time ε. Thus we have that σ is homologous, via a boundary that exists by time ε, to the 1-cycle 
σ′ which is a 2-boundary by time ε. Hence the death time of σ as a homology class is < ε. �

Now we use Lemma 35 to prove the proposition. Notice that we again use the property that all 1-simplices 
enter at time 0 in the ultrametricity filtration.

Proof of Proposition 34. Let ε > 0 be given, and σ =
∑n−1

i=0 [vi, vi+1] + [vn, v0] be a 1-cycle. We can rewrite 
σ as σ =

∑n−1
i=0 [v0, vi] +[vi, vi+1] − [v0, vi+1]. Then by Lemma 35, we have that each term [v0, vi] +[vi, vi+1] −

[v0, vi+1] in σ is a 2-boundary of some 2-chain τi by time ε. Thus we have σ = ∂
(∑n−1

i=0 τi

)
, which is a 

2-chain appearing by time ε, and so the claim is shown for the case of dgmult
1 (X). �

As S1 is a path connected space, Proposition 34 tell us that the 1-dimensional persistence of S1 is trivial. 
One wonders if this triviality holds into higher dimensions. We have computationally found that it is trivial 
in dimension 2 as well, but there is nontrivial persistence in dimension 3.

Remark 36 (The case of dgmult
2 ). We have computationally observed that for the interval [0, 1], and for the 

geodesic and Euclidean versions of S1 and S2, dgmult
2 is negligible for a wide range of sampling densities of 

these spaces.

Conjecture 1. For any compact geodesic space X, we have dgmult
2 (X) is trivial.

Remark 37 (The case of dgmult
3 ). Let S1

m for m ∈ Z+ be an equidistant sampling of m points on S1, with 
the metric induced by the geodesic metric on S1. We used Javaplex [30] and Dionysus [31] to compute the 
persistent homology of S1

m for dimensions up to 3 under the ultrametricity filtration. For m = 7, 8, . . . , 50, 
let m = 7 · q + r be the Euclidean algorithm factorization of m, with 0 ≤ r < 7. Then, we experimentally 
observed that, for each m in the range above, the 3-dimensional persistence will consist of some number 
repetitions of the interval 

[2π
m , 4π

m

)
, alongside one other interval of significant length:

dgmult
3 (S1) � [b, d) =

⎧⎨
⎩
[ 2π
m , 2·qπ

m

)
r = 0[

2π
m , 2·(q+1)π

m

)
r > 0

This computational experiment coupled with the stability result in Proposition 31 suggests the following 
conjecture:

Conjecture 2. For the geodesic space S1, which we get as a metric space via taking m → ∞, we have

dgmult
3 (S1) =

[
0, 2π

7

)
.

We want to point out that although the Vietoris-Rips barcodes of S1 are now known, it took significant 
effort to characterize them fully [32].
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Fig. 3. Left: VR barcode. Right: barcodes from different basepoints using the eccentricity basepoint filtration (Section 6.2). Observe 
that the basepoint filtration is much more informative and is more sensitive to the presence of extremities in data.

5. Generalizing to basepoint filtration functors

The global and local filtration functors that we have considered so far can be generalized further by 
allowing these filtrations to depend on a basepoint (see e.g. [23,20]). We proceed to the definition and 
properties of basepoint and local basepoint filtrations, and end with a concrete example of a basepoint 
filtration.

5.1. Basepoint filtration functors

Continuing the ideas discussed in Section 1 and Theorem 17, we now consider an assignment of a filtration 
functor to each point of a space, which we refer to as a basepoint filtration functor. Instead of mapping each 
finite metric space to a single filtered space, this functor maps a metric space to a collection of filtrations, 
each depending on a choice of basepoint (see Fig. 3). This representation gives specific localized information 
about the space, and allows the user to pick out filtrations emphasizing the importance of a particular 
region of the space.

Definition 38. For any X ∈ M, a basepoint family of filtrations on X is any collection

{ΨX,x0 : pow(X) → R}x0∈X ,

where for all x0 ∈ X, ΨX,x0 is a filtration on X.
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Example 39. Given a geodesic space (X, dX), the sublevel set filtrations associated to {dX(p, ·)}p∈X form a 
basepoint family of filtrations.

Definition 40. A basepoint filtration map is a map Ψ : M → pow(F) such that Ψ takes any X ∈ M to a 
basepoint family of filtrations ΨX = {ΨX,x0 : pow(X) → R}x0∈X . Basepoint filtration maps are said to be 
(Miso) functorial if the following condition is satisfied:

Given X, Y ∈ M and h : X → Y an isometric embedding, one has ΨX,x0(σ) ≥ ΨY,h(x0)(h(σ)) for all 
σ ⊂ X and x0 ∈ X.

Definition 41. When we simply refer to a basepoint filtration functor, we mean an Miso-functorial basepoint 
filtration map.

Remark 42. If instead we have ΨX,x0(σ) ≤ ΨY,h(x0)(h(σ)), then Ψ is said to be a contravariant basepoint 
filtration functor.

Note that any filtration as we have previously defined gives rise to a basepoint filtration:

Example 43 (Constant basepoint filtration functors). Let Φ : M → F be any filtration functor. We define 
the constant basepoint filtration functor Ψconst to be

Ψconst
X (x0) = ΦX , ∀X ∈ M, x0 ∈ X.

For example, for all x0 ∈ X, define ΨX,x0 to be the Vietoris-Rips filtration. Then this basepoint filtration 
functor contains the same information as the Vietoris-Rips filtration.

As before, we have to impose stability conditions on these filtrations so that there is a relation not only 
among spaces, but also among filtrations of the same space based at different basepoints. We now define 
the cost function associated to a basepoint filtration functor and use it to define a notion of stability.

Definition 44. Given X, Y ∈ M, k ∈ Z+, and a basepoint filtration functor Ψ, the k-dimensional cost 
function induced by Ψ is the map CΨ,k : X × Y → R+ given by

(x, y) �→ dB

(
dgmΨX,x

k (X),dgmΨY,y

k (Y )
)
.

Definition 45. Let L > 0. A basepoint filtration functor Ψ is L-stable if

min
R∈R(X,Y )

max
(x0,y0)∈R

CΨ,k(x0, y0) ≤ L · dGH(X,Y ), for all X,Y ∈ M, for all k ∈ Z+.

Having defined the preliminaries of basepoint filtrations, we now merge this concept with that of valu-
ations to obtain “local” basepoint filtrations. Here “local” refers to the locality of valuations described in 
Definition 23. Additionally we incorporate the notion of a point descriptor which encodes information about 
the particular position of a basepoint in the space.

5.2. Local basepoint filtration functors

Let n ∈ N. For all X ∈ M, x0 ∈ X and σ ⊂ X, we define the basepoint n-th curvature set of σ to be

Kn(x0, σ) :=
{
D

(n+1)
X (x0, x1, . . . , xn) ∈ R(n+1)×(n+1) : x1, . . . , xn ∈ σ

}
.
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This set generates Kn(ιX(σ)) and appends the distances between σ and the basepoint x0 to the first 
row and column, i.e. the top-left corner of the matrix. This means that if we define the projection π :
R(n+1)×(n+1) → Rn×n to be π(A) = (aij)n+1

i,j=2, then π(Kn(x0, σ)) = Kn(ιX(σ)).
Given a natural number n and any stable (n +1)-valuation νn+1, one can construct the basepoint filtration 

functor Ψνn+1 defined as follows: each X ∈ M induces the basepoint map Ψνn+1
X : X → F given by

x �→ Ψνn+1
X,x ,

where the filtration value of a simplex σ ⊂ X is given by

Ψνn+1
X,x (σ) := νn+1(Kn(x, σ)).

The family Ψνn+1 is a basepoint family of filtration functors induced by νn+1. This is a possible path 
through which we can generate basepoint filtration functors, but it has a disadvantage. Although we are 
considering information about the basepoint and the simplex, we are not taking into account the particular 
position of the basepoint in the space. This could be measured by other extrinsic quantities that cannot be 
computed using only the basepoint curvature sets, which are intrinsic. For this, we define first the notion 
of functions that describe the point with respect to the whole space.

To do so, fix � ∈ N and let M� be the collection of all triplets (X, dX , fX) where (X, dX) is a finite metric 
space and fX : X → R� is a function. We will think of a map from M to M� to be a relation that, for each 
X ∈ M and a point x0 ∈ X, assigns a set of quantities that describe the position of the point with respect 
to the space.

Definition 46. A point descriptor ρ : M → M� is a map (X, dX) �→ (X, dX , ρX : X → R�) such that there 
exists a constant K > 0 with the property that for all X, Y ∈ M and any correspondence R ⊂ X × Y ,

max
(x0,y0)∈R

‖ρX(x0) − ρY (y0)‖∞ ≤ K · dis(R).

We say that ρ is K-stable if this condition is satisfied for some K ≥ 0.

By incorporating point descriptors in valuations, we consider extrinsic features of the basepoint in the 
filtration value of simplices. We refer to these objects as adjusted valuations.

Definition 47 (Adjusted valuation). Let n, � ∈ N. An (n, �)-adjusted valuation is a map

νn,� : pow(Rn×n) ×R� → R

with an altered version of monotonicity: for any fixed v ∈ R�, νn,�(A, v) ≥ νn,�(B, v) for all B ⊂ A ∈
pow(Rn×n). We say that an adjusted valuation νn,� is L-stable if for all A, B ∈ pow(Rn×n) and v, w ∈ R�,

|νn,�(A, v) − νn,�(B,w)| ≤ L · max{d(Rn×n,�∞)
H (A,B), ‖v − w‖∞}.

Combining the notion of a point descriptor and an adjusted valuation produces a more general and 
informative class of filtration functors than those obtained simply by applying valuations to the basepoint 
curvature set.

Definition 48 (Local basepoint filtration functor). Let n, � ∈ N. A basepoint filtration functor Ψ is (n, �)-local
if there exists a point descriptor ρ with image in R� and an adjusted valuation νn,� : pow(Rn×n) ×R� → R

such that for any X ∈ M and x0 ∈ X:
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ΨX,x0(σ) = νn,�(Kn−1(x0, σ), ρ(x0)) ∀σ ⊂ X.

We now move on to proving the stability of these constructions.

5.3. Stability results for local basepoint filtrations

Recall the notion of “covariance” and “contravariance” from Remarks 10 and 42.

Theorem 49. Let Ψ be an (n, �)-local basepoint filtration functor for some n, � ∈ N. Let νn,� be an L-stable 
adjusted valuation and ρ a K-stable point descriptor with image in R� such that Ψ is generated by νn,� and 
ρ. Then, for all k ≥ 0, and all finite metric spaces X, Y ,

min
R∈R(X,Y )

max
(x0,y0)∈R

CΨ,k(x0, y0) ≤ 2L · max{1,K} · dGH(X,Y ).

Moreover, the theorem also holds if Ψ is contravariant.

Proof. The proof does not rely on the covariant or contravariant structure of Ψ, so we only need to show 
the inequality. Let X, Y ∈ M and R0 ∈ R(X, Y ) such that 1

2dis(R0) = dGH(X, Y ). Now, notice that if 
πX , πY are the canonical projections from R0 to X and Y respectively, then (R0, πX , πY ) is a triplet with 
a set and surjective maps to X and Y , respectively.

Now let σ ⊂ R0 and (x0, y0) ∈ R0. Notice that (σ, πX |σ, πY |σ) is a triplet of a set and two surjective maps 
to πX(σ) and πY (σ). Let σX = πX(σ) and σY = πY (σ) be the metric spaces generated by the projections. 
We observe that

|ΨX,x0(πX(σ)) − ΨY,y0(πY (σ))| = |νn,�(Kn−1(x0, σX), ρX(x)) − νn,�(Kn−1(y0, σY ), ρY (y))|
≤ L · max{dH(Kn−1(x0, σX),Kn−1(y0, σY )), ‖ρX(x0) − ρY (y0)‖∞}.

We would like to bound the two terms inside the max. From the definition of stability of point descriptors, 
we see that,

‖ρX(x0) − ρY (y0)‖∞ ≤ K · dis(R0) = 2K · dGH(X,Y ).

This bounds the second term. For the first term, let α = D
(n)
X (x0, . . . , xn−1) ∈ Kn−1(x0, σX). There are 

y1, . . . , yn−1 such that (xi, yi) ∈ σ for all i ∈ {1, . . . , n − 1}. We also had (x0, y0) ∈ R by assumption. Set 
β = D

(n)
Y (y0, y1, . . . , yn−1). Then we have

‖α− β‖∞ = max
0≤i,j≤n

{|dX(xi, xj) − dY (yi, yj)|} ≤ dis(R0) = 2 · dGH(X,Y ).

Putting these observations together, we have

|ΨX,x0(πX(σ)) − ΨY,y0(πY (σ))| ≤ L · max{2 · dGH(X,Y ), 2K · dGH(X,Y )}
= 2L · max{1,K} · dGH(X,Y ).

Recalling the definition of dF from Equation (1), it follows that for all (x0, y0) ∈ R0,

dF ((X,ΨX,x0), (Y,ΨY,y0)) ≤ 2L · max{1,K} · dGH(X,Y ).

From this, we conclude
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min
R∈R(X,Y )

max
(x0,y0)∈R

dF ((X,ΨX,x0), (Y,ΨY,y0)) ≤ max
(x0,y0)∈R0

dF ((X,ΨX,x0), (Y,ΨY,y0))

≤ 2L · max{1,K} · dGH(X,Y ).

Finally, from Theorem 6, we conclude that for any k ≥ 0,

min
R∈R(X,Y )

max
(x0,y0)∈R

CΨ,k(x0, y0) ≤ 2L · max{1,K} · dGH(X,Y ). �
This result is the most general stability theorem we prove in this work. It is a generalization of Theorem 26, 

in light of the fact that all previously considered filtration functors can be viewed as basepoint filtration 
functors, as seen in Example 43.

We know that local filtration functors are well behaved when generated by stable adjusted valuations and 
point descriptors. Now we must consider a different type of stability. It should be true that changing the 
basepoint transforms the diagrams in a continuous way. This would align with the idea that the filtration 
depends on the perspective of the point; if the perspective changes by a small distance, the induced diagrams 
should incur small changes.

Proposition 50. Let X ∈ M and x, x′ ∈ X. Let Ψ be a local basepoint filtration functor. Let νn,� be an 
L-stable adjusted valuation and ρ a K-stable point descriptor with image in R�. Let us assume that νn,� and 
ρ generate the basepoint filtration functor Ψ. Then, for all k ∈ N,

dB(dgmΨX,x

k (X),dgmΨX,x′
k (X)) ≤ L · max{1,K} · dX(x, x′).

Proof. Recalling the definition of dF and Theorem 6, it is sufficient to show that there is a triplet (Z, πX , π′
X)

of a set Z and two surjective maps πX , π′
X : Z → X such that

max
σ⊂Z

|ΨX,x(πX(σ)) − ΨX,x′(π′
X(σ))| ≤ L · max{1,K} · dX(x, x′).

Let X ∈ M and x, x′ ∈ X. Then (X, idX , idX) is a triplet of a set and two surjections to the set X. Let 
σ ⊂ X. Then,

|ΨX,x(idX(σ)) − ΨX,x′(idX(σ))| = |ΨX,x(σ) − ΨX,x′(σ)|
= |νn,l(Kn−1(x, σ), ρX(x)) − νn,l(Kn−1(x, σ), ρX(x′))|
≤ L · max{dH(Kn−1(x, σ),Kn−1(x′, σ)), ‖ρX(x) − ρX(x′)‖∞}.

We need to bound the terms inside the max. Fix a correspondence R = {(x, x)}x∈X ∪ {(x, x′)} ∈ R(X, X). 
It follows that

dis(R) = max
z∈X

|dX(z, x) − dX(z, x′)| ≤ dX(x, x′),

and so

‖ρX(x) − ρX(x′)‖∞ ≤ K · dX(x, x′).

Now let α ∈ Kn−1(x, σ). There exist x1, . . . , xn−1 ∈ σ such that α = D
(n)
X (x, x1, . . . , xn−1). It follows 

that β = D
(n)
X (x′, x1, . . . , xn−1) is an element of Kn−1(x′, σ), and so

‖α− β‖∞ = max |dX(x, xi) − dX(x′, xi)| ≤ dX(x, x′).

1≤i≤n−1



20 S. Chowdhury et al. / Topology and its Applications 279 (2020) 107254
Similarly, we can prove that if we choose β ∈ Kn−1(x′, σ), there is an element α ∈ Kn−1(x, σ) such that 
‖α− β‖∞ ≤ dX(x, x′). This implies that dH(Kn−1(x, σ), Kn−1(x′, σ)) ≤ dX(x, x′). Then,

|ΨX,x(σ) − ΨX,x′(σ)| ≤ L · max{dX(x, x′),K · dX(x, x′)} = L · max{1,K} · dX(x, x′),

where the inequality comes from the K-stability of ρ. This concludes the proof. �
Having established the theoretical framework for basepoint filtration functors, we now proceed to a 

concrete example of such a functor.

5.4. Eccentricity basepoint filtration functor

Given a compact metric space (X, dX), we recall the eccentricity function (see [25]) eccX : X → R+
defined by x �→ maxx′∈X dX(x, x′).

Example 51 (Eccentricity basepoint filtration). An interesting example of a contravariant basepoint filtration 
functor is the map Ψecc defined so that for each X ∈ M,

Ψecc
X = {Ψecc

X,x0
: pow(X) → R}x0∈X ,

where for x0 ∈ X and σ ⊂ X,

Ψecc
X,x0

(σ) := max
{

diam(ιX(σ)), 1
2

(
eccX(x0) − min

x′∈σ
dX(x0, x

′)
)}

.

Remark 52. This definition is motivated by a construction that becomes intuitive when understood in the 
context of manifolds. For the purposes of this remark, consider the case of a surface X in Euclidean space. 
Let x ∈ X, and let x′ ∈ X be such that dX(x, x′) achieves eccX(x). Let σ denote a closed ball containing 
x′. The filtration value of σ is then roughly the diameter of σ. Then as we “slide” σ towards x, say along 
a geodesic, the filtration value of σ approaches eccX(x). The preceding definition is the discrete analog of 
this idea.

The constant 1
2 controls the dominance of the diameter term. Using 0 instead would recover the Vietoris-

Rips filtration. In general, the smaller the constant, the greater the portion of the exterior (relative to the 
basepoint) of the space that is filtered similarly to the Vietoris-Rips filtration. This is illustrated with the 
experiment on the 3D scan of a cat in Section 6.2.

Lemma 53. Ψecc is a well-defined, contravariant basepoint filtration functor.

Proof. Let X ∈ M and x0 ∈ X. First we show that Ψecc
X,x0

is a filtration on X. By definition, we already 
have that Ψecc

X,x0
is a map from pow(X) to R+, so we only need to show that it satisfies the monotonicity 

condition. Let τ ⊂ σ ⊂ X. Then we have diam(ιX(τ)) ≤ diam(ιX(σ)), and min
x′∈σ

dX(x0, x′) ≤ min
x′∈τ

dX(x0, x′)
since τ ⊂ σ. This implies that

1
2

(
eccX(x0) − min

x′∈σ
dX(x0, x

′)
)

≥ 1
2

(
eccX(x0) − min

x′∈τ
dX(x0, x

′)
)
.

Putting these two together gives that Ψecc
X,x0

(τ) ≤ Ψecc
X,x0

(σ), so the monotonicity condition holds, and Ψecc
X,x0

is a filtration on X.
Next we check contravariance. Let (Y, dY ) ∈ M, and let h : X → Y be an isometric embedding. Let 

x ∈ X, σ ⊂ X. Note that diam(ιX(σ)) = diam(ιY (h(σ))), and minx′∈σ dX(x, x′) = miny∈h(σ) dY (h(x), y). 
However, eccX(x) = eccι(h(X))(h(x)) ≤ eccY (h(x)). Thus Ψecc

X,x(σ) ≤ Ψecc (h(σ)). �
Y,h(x)
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Thus we see that Ψecc is a (contravariant) basepoint filtration functor. For this functor, eccX(x) is the 
point descriptor. Then ∀A ∈ Kn(x0, X), the adjusted valuation is given by

νn+1,1(A× v) := max
{

max(aij)2≤i,j≤n+1,
1
2 (v − min(a1j)2≤j≤n+1)

}
.

To prove stability of the eccentricity filtration, we just need that the adjusted valuation and ecc function 
are stable, which is an immediate consequence of the following:

Lemma 54 ([25]). Let X, Y ∈ M and let R ∈ R(X, Y ). Then,

1. |diam(X) − diam(Y )| ≤ dis(R),
2. For all (x, y) ∈ R, |eccX(x) − eccY (y)| ≤ dis(R).

In Section 6.2 we provide a computational example illustrating the use of the eccentricity functor.

Remark 55. The structure of the eccentricity functor is similar to that of a filtration based on mean curvature 
that appeared in the master’s thesis [33]. The approach taken in [33] was to look at the cluster tree of 
connected components instead of persistence diagrams obtained after applying the homology functor. A 
similar approach of tracking the connected components of the eccentricity functor may also be taken, 
although we do not pursue this direction in the current work. The resulting object will be a rooted tree with 
leaf nodes appearing at possibly different filtration values. This method of producing a family of rooted 
trees can also be shown to be stable using the techniques described above.

6. Computational examples

Throughout this section, we write FPS to mean the farthest point sampling procedure [34].2 Persistence 
computations were carried out using Javaplex [30] and Ripser [35]. Our code for the experiments below 
is written in Matlab and can be found on https://github .com /NateClause /Ultrametricity _Filtration and 
https://github .com /NateClause /Basepoint -Filtration. We will use both persistence diagrams and barcodes 
to visualize the final results of running our code on data.

6.1. The Φult filtration functor

We start by describing experiments carried out using the Φult filtration functor. In this filtration, all 1-
simplices appear at time 0, and so the 0-dimensional barcode is not informative. In our experiments, higher 
dimensional ultrametricity barcodes for datasets arising in phylogenetics appear to be more informative 
than those produced by the Vietoris-Rips filtration.

6.1.1. Implementation details
We produced code for computing the ultrametricity filtration and for producing the corresponding 

barcodes using Javaplex. The software can be found at https://github .com /NateClause /Ultrametricity _
Filtration. Two programs were developed. The first one computes the barcodes of a finite metric space 
given the distance matrix representation. As the implementation is not optimized, we recommend starting 
with a small dataset (∼50 points). The second function displays a window in which the user chooses up to 
thirty points in the plane. After selecting the points, the algorithm computes the ultrametricity persistence 

2 This is sometimes referred to as sequential max-min sampling as well.

https://github.com/NateClause/Ultrametricity_Filtration
https://github.com/NateClause/Basepoint-Filtration
https://github.com/NateClause/Ultrametricity_Filtration
https://github.com/NateClause/Ultrametricity_Filtration
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diagram of the point cloud endowed with the Euclidean subspace metric. This serves the purpose of giving 
a simple platform for experimenting with this filtration.

The following question plays an important role on the computational limitations of our algorithms: Is it 
possible to find a transformation of a distance matrix so that the Vietoris-Rips barcodes of the transformed 
matrix agree with the ultrametricity barcodes of the original matrix? If the answer is positive, then we 
can use optimized programs such as Ripser on the transformed matrix for efficient computation of the 
ultrametricity barcodes. Unfortunately, while we provide a positive answer to the question in the setting 
of Ψecc (see Section 6.2), it is still open in the setting of Φult. Nonetheless, our software still enables 
experimentation on different datasets using the ultrametricity filtration. We explore some examples below.

6.1.2. Φult on phylogenetics datasets
The construction of Φult naturally suggests its use on datasets arising in phylogenetics. In the next 

example, we used a dataset of mitochondrial DNA sequences for different primates curated through the 
NCBI GenBank genetic sequence database [36–40]. This dataset consisted of genetic subsequences—each 
comprising ∼ 350 bases—coming from 12 different primates. The data was preprocessed using the Jukes-
Cantor metric for comparing genetic sequences. This preprocessed data comprised a 12 ×12 distance matrix 
which we used for subsequent computations. We denote this matrix as DP in the rest of this discussion.

As a first look at the data, we computed the single linkage dendrogram from DP . This is visualized in 
Fig. 4. The four genera of the Hominidae family are easily distinguishable. Next we plotted the persistence 
barcodes of DP using both the Vietoris-Rips filtration and the ultrametricity filtration. The ultrametricity 
filtration yielded a more complex barcode in dimension 1 than the VR filtration, and also yielded numerous 
bars in dimension 2 whereas the VR filtration produced none. To interpret the bars, we studied representative 
generators as returned by Javaplex. Because these representatives are not necessarily unique, we restricted 
our attention to intervals of the form [b, d) where we were able to: (1) directly identify unique 2-simplices 
that were born at b, d respectively, and (2) verify that the vertices of these 2-simplices were involved in the 
representative returned for [b, d). The direct verifications were performed using DP .

The 2-cycle for one of these intervals forms a triangular bipyramid, as illustrated in Fig. 4. This 2-cycle 
persists on the interval [0.029, 0.033), and is filled in when the 2-simplex comprising the European human, 
Western chimpanzee, and Puti orangutan is filled in. Notably, these three species come from three distinct 
genera of the Hominidiae family.

As an extra validation step for the ultrametricity filtration, we present results from performing the same 
analysis on a bird flu dataset [41] in Fig. 5. In this case, the Vietoris-Rips filtration yields trivial barcodes in 
dimensions greater than 0, and thus is no more informative than the single linkage dendrogram. However, 
the ultrametricity filtration continues to produce barcodes with complex structure in both dimensions 1 and 
2.

These examples suggest that when comparing groups of phylogenetic datasets, the ultrametricity filtration 
provides stronger discrimination than the Vietoris-Rips filtration through the use of the bottleneck distance 
to compare barcodes in dimensions 1 and 2. We performed a meta-analysis on an HIV dataset to validate this 
claim. Following [42], we took a dataset of 1175 samples of the HIV-1 env gene released by the Los Alamos 
National Laboratory [43]. Each sample comprises a sequence of ∼ 3400 nucleotides. This particular gene 
encodes the enveloping protein used by the virus to bind to a host cell. Next we performed a bootstrapping 
procedure where we took batches of 25 gene sequences at a time, computed their pairwise distance using 
the Jukes-Cantor metric (using Matlab’s seqpdist function), and computed their persistence diagrams in 
dimensions 0-2 using both the Vietoris-Rips and ultrametricity filtrations. This procedure was repeated for 
1000 iterations. Boxplots of the number of bars and the length of the longest bar in dimensions 1 and 2 
for these 1000 iterations are provided in Fig. 6. These results support the hypothesis that when comparing 
groups of gene sequences, e.g. samples of HIV strains grouped by country or year, the ultrametricity filtration 
is more informative than the Vietoris-Rips filtration.
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Fig. 4. Results from the primate dataset. Top row: The Vietoris-Rips barcode is less informative than the ultrametricity barcode in 
dimensions 1 and higher. The additional bars in the ultrametricity barcode suggest that ultrametricity-based lower bounds would 
be more effective than VR-based lower bounds for discriminating between such datasets. Bottom left: Single linkage dendrogram 
obtained from the 12 × 12 distance matrix obtained using the Jukes-Cantor metric for gene sequence comparison. The entries 
“Puti_Orangutan” and “Jari_Orangutan” do not refer to distinct species, but are simply the names of two Sumatran orangutans.
Bottom right: Triangular bipyramid configuration of a set of generators for a nontrivial 2-dimensional homology class comprising the 
interval [0.029, 0.033). The common chimpanzee and the western chimpanzee correspond to Chimp_Troglodytes and Chimp_Verus, 
respectively. This 2-cycle becomes a boundary when the European human-Western Chimpanzee-Puti Orangutan simplex is filled 
in. Observe from the dendrogram that these species come from three distinct genera.

Fig. 5. Results from carrying out our analysis pipeline on a bird flu dataset. Dendrogram labels correspond to locations and times 
when each virus strain was sampled. The Vietoris-Rips filtration has no persistence in dimensions greater than 0, and is thus no 
more informative than the single linkage dendrogram. In comparison, the ultrametricity filtration produces complex barcodes in 
dimensions 1 and 2.
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Fig. 6. Boxplots corresponding to the HIV dataset example. Across 1000 iterations, we find that the ultrametricity filtration produces 
more and longer bars in dimensions 1 and 2 than the Vietoris-Rips filtration.

Connections to literature on genetic recombination Genetic recombination refers to the event that genomes 
from different organisms combine to form a new genome with shared traits, and is a fundamental process in 
evolution. This is a multiscale phenomenon that ranges from the individual level (recombination between 
two organisms of the same species) to the population level (recombination between distantly related sub-
species). Such events are often modeled by adding links between nodes in a phylogenetic tree. These links 
introduce cycles, and the multiscale nature naturally suggests the use of persistent homology for studying 
recombination. Such uses were demonstrated in [42], and subsequent work [44–46] developed the theoretical 
foundations of this approach from multiple perspectives.

While theoretical results supporting our empirical observations regarding ultrametricity barcodes for 
phylogenetic datasets are beyond the scope of the current work, we outline a plausibility argument for 
studying genetic recombination of populations with distantly related ancestors through ultrametricity. A 
nontrivial homology class in dimension 2, such as that generated by the five-point triangular bipyramid 
illustrated in Fig. 4, is obtained when the set of five samples {r1, r2, r3, a1, a2} are such that {{a1, ri, rj} :
1 ≤ i = j ≤ 3} and {{a2, ri, rj} : 1 ≤ i = j ≤ 3} form triangles with low ultrametricity, and {r1, r2, r3}
forms a triangle with higher ultrametricity. This occurs when a1, a2 are ancestors of {r1, r2, r3} from a 
distant generation that are themselves not closely related, and {r1, r2, r3} are from nearby generations and 
are closely related by recombination. It may be the case that {r1, r2, r3} do not always form a triangle with 
high ultrametricity, but we do expect to observe triples with high ultrametricity given sufficient samples.

6.2. The Ψecc basepoint functor

We now consider the Ψecc basepoint functor. For a fixed filtration with basepoint x0, the first simplices 
to enter the complex occur in the part of the space furthest away from the selected basepoint x0. As the 
filtration value increases, simplices located closer to x0 enter sequentially. To give more concrete intuition, 
we developed an interactive program for studying the eccentricity filtration on point cloud data and used 
it to study a publicly available shape dataset.

6.2.1. Implementation details
This interactive code can be found at https://github .com /NateClause /Basepoint -Filtration. The code 

utilizes both Javaplex [30] and Ripser [35] for the persistent homology calculations. Note that all higher 
dimensional simplices in an eccentricity filtration are determined by the 1-skeleton of the corresponding 
simplicial complex. This allows us to employ the following computational trick for computing persistence 

https://github.com/NateClause/Basepoint-Filtration
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Fig. 7. Original scan of cat and point cloud approximation.

via Ripser. Instead of passing the standard distance matrix to Ripser, we precompute the filtration values 
for all pairs of points in the space, and pass this matrix of filtration values to Ripser as a distance matrix. 
When Ripser computes the Vietoris-Rips persistent homology of the space, the 1-dimensional simplices 
arrive at the time which is the “distance” between the two vertices as per the distance matrix. This is not 
the actual distance, but instead the filtration value of the simplex. Note that Ripser adds all 0-simplices at 
time 0, but since we are only using Ripser for computing persistent homology in dimensions 1 and higher, 
this does not affect the computations. Utilizing Ripser in this way is advantageous because Ripser is more 
computationally efficient than Javaplex and enables us to work with larger datasets. Since Ripser adds in 
all vertices at time 0, and this is not how the eccentricity filtration works, Javaplex is used to compute 
0-dimensional persistent homology. We also make use of an option in Javaplex to return a representative 
cycle of a homology class. This gives useful information, as we note in the example below.

To run the code, the user inputs the point cloud for a finite metric space. The program then plots the 
dataset in 3D. Note that when working with higher-dimensional datasets, the user must preprocess the data 
to embed it into three dimensions. This can be done via standard techniques such as principal component 
analysis. The user then clicks on a point within the space. Upon doing so, the following actions occur: this 
point will be selected as the basepoint for the corresponding basepoint eccentricity filtration, the persistent 
homology of the space using this filtration will be computed, and the persistence barcodes will be plotted 
on the screen. For visualization help, the plot of the metric space never disappears, and after a basepoint 
is selected, it is highlighted and all the other points are colored by how close they are to the basepoint. 
This helps in understanding the behavior of the eccentricity term in the filtration. After observing the 
persistence barcodes, the user may then click on a new point on the original plot to select a new basepoint 
and the process will then be repeated. The code is modularized in a way to enable easy, quick changes 
to the filtration while maintaining other functionalities. If one wanted to computationally test a different 
basepoint filtration functor, one would only need to alter the portion of the code where the eccentricity 
functor is currently defined.

6.2.2. Ψecc on a 3D shape
The data in the next example is from a high resolution scan of the surface of a cat from a public repository 

[47] which is modeled as a finite metric space with geodesic distances. The original scan contained over 27000 
points in 3D, so in order to make it computationally practical we used the built-in FPS sampling tool in 
Javaplex to select 500 points to approximate the data. Fig. 7 shows the original image of the scan, as well 
as a plot of our 500 selected points.

The eccentricity filtration can give useful information about the “protrusions” of a space, via the 0-
dimensional persistence intervals. This is demonstrated in Fig. 8.
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Fig. 8. The selected basepoint is on the belly of the cat. The longest bar corresponds to the tip of the tail, the four bars of similar 
length correspond to the legs, and the single medium-sized bar corresponds to the face.

Fig. 9. Left: The red, highlighted basepoint selected for eccentricity filtration is close to the boundary of the metric space (on the 
tail). Mid-right: The red, highlighted basepoint selected for eccentricity filtration is central in the metric space (on the belly).

A central point on the figure occurs on the belly of the cat. When selecting this (or any other relatively 
central) point as the basepoint for the eccentricity filtration, one can see all of the “protrusions” of the space 
as 0-dimensional persistence intervals. The infinitely persisting class always starts at a point which realizes 
the eccentricity of the basepoint; in this case the tip of the tail. We use the homology class representative 
feature of Javaplex to see that one short interval in the bottom left of the diagram represents a class from 
the tail, which makes sense as at the edge of the tail the diameter term in the filtration is dominant, and 
thus the filtration behaves similarly to the Vietoris-Rips filtration in this region. Then the next two shorter 
intervals correspond to classes starting at the tips of the ears, until they merge with the larger class right 
above them, which corresponds to a class which originates from a point on the face of the cat. Lastly, the 
four remaining intervals of similar persistence correspond to the four classes starting at the end of each leg 
of the cat.

Next, we provide two plots of 1-dimensional persistence diagrams resulting from different selections of 
basepoint (Fig. 9).

In the left of Fig. 9, the tip of the tail is selected as a basepoint. Since this is at one edge of the space, a large 
portion of the space opposite this basepoint will behave similarly to rips. The longest persistent interval 
corresponds to the loop going around the main body of the cat. There are also lots of short persistent 
intervals, which mostly correspond to noise as 500 points cannot completely represent a space originating 
from 27000 points. In the right of Fig. 9, we see the 1-dimensional barcodes when a central point is chosen 
as the basepoint. As noted, the largest natural loop from this space is the one going around the main body. 
However, the basepoint lies on this loop, so it will not be realized as a loop in the eccentricity filtration. While 
choosing a central basepoint is useful for considering 0-dimensional persistence, such a choice of basepoint 
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Fig. 10. Diagram with eccentricity constant 1
4 .

will more often than not generate significantly fewer and shorter 1-dimensional persistent intervals than 
with a choice of basepoint on the extremities of the space.

Next, we note that the eccentricity filtration can be adjusted by changing the constant of 1
2 in front of 

the eccentricity term in Example 51. In Fig. 10, we provide the 1-dimensional barcode with the same central 
basepoint, but a constant of 1

4 on the eccentricity term instead.
Note that there are many more, and longer, persistence intervals than the same filtration with a constant 

of 1
2 on the eccentricity term. What this constant regulates is effectively how far away from the basepoint 

to filter the space as if it were the Vietoris-Rips filtration. The smaller the constant, the greater the portion 
on the exterior (relative to the basepoint) of the space is treated similarly to Vietoris-Rips. In fact, if this 
constant is 0 we see that the eccentricity filtration is equivalent to the Vietoris-Rips filtration.

7. Discussion

In this paper, we defined a framework for generating new filtrations (and including existing filtrations) 
on finite metric spaces using Gromov’s curvature sets and provided easy-to-use practical implementations. 
Curvature sets are used because they comprise a full invariant of a metric space, and our computational 
examples substantiate the theoretical expectation that large families of filtrations capture multifaceted 
information about a dataset.

As discussed in Section 4.2, new filtrations can be easily generated using Lipschitz functions on n × n

matrices. This leads to constructions such as the eccentricity and ultrametricity filtration. We have created 
an interactive platform for exploratory data analysis using the eccentricity filtration and provided a thorough 
example application on a 3D shape. We have also presented examples of phylogenetics datasets showing 
that the ultrametricity filtration outperforms the Vietoris-Rips filtration, which is the standard workhorse 
of persistent homology. Looking forward, we remark that a related quantity called hyperbolicity [29] can be 
used to produce a 4-local filtration functor, and applications of this functor to datasets remain open.
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Fig. A.11. Two four-point metric spaces.

Appendix A. Supplementary information

A.1. The role of minimizing correspondences for the eccentricity filtration

Example 56. The definition of stability for basepoint filtration functors is based on a minimizing correspon-
dence. In this example, we demonstrate why such a restriction must be made.

Consider the two four-vertex graphs P = {p1, p2, p3, p4} and Q = {q1, q2, q3, q4} as seen in Fig. A.11. We 
now refer to P and Q as the finite metric spaces of these graphs equipped with the graph metric.

The natural correspondence between these two metric spaces is

R1 = {(p1, q1), (p2, q2), (p3, q3), (p4, q4)}.

This correspondence also is one whose distortion generates the Gromov-Hausdorff distance between P and 
Q of 1. To demonstrate the importance of using a minimal correspondence in stability, we compute the 0-
dimensional cost function induced by Ψecc for pairs of basepoints in both this correspondence and a different 
one.

We start by computing the values of CΨecc,0(pi, qi) for pairs of basepoints in R1. With p1 as the selected 
basepoint, the filtration value of p4 will be 0, the filtration value of p2 and p3 will be 5, and the filtration 
value of p1 will be 11

2 . The edge [p2, p3] will have filtration value 5, the edges [p1, p2] and [p1, p3] will 
both have filtration value 11

2 , and the edge [p3, p4] will have filtration value 10. The connected component 
generated by p4 appears at time 0, and the connected component generated by p2/p3 appears at time 
5. p1 is connected via edges to p2 and p3 immediately after it appears at time 11

2 and thus does not 
generate a connected component. Lastly, the connected component generated by p2/p3 disappears at time 
10 when it is connected to p4 by edge [p3, p4]. Thus, the 0-dimensional persistence intervals with p1 as the 
selected basepoint will be [0, ∞) and [5, 10). Note p1 and p2 are interchangeable, so these will also be the 
0-dimensional persistence intervals with p2 as the selected basepoint.

With p3 as the selected basepoint, the filtration value of p4 will be 0, the filtration value of p1 and p2 will 
be 9

2 , and the filtration value of p3 will be 5. The edge [p1, p2] will have filtration value 9
2 , the edges [p1, p3]

and [p2, p3] will have filtration value 5, and the edge [p3, p4] will have filtration value 10. The connected 
component generated by p4 again appears at time 0, and the connected component generated by p1, p2
appears at time 9

2 . p3 is connected via edges to p1 and p2 immediately after it appears at time 5 and thus 
does not generate a connected component. Lastly, the connected component generated by p1/p2 disappears 
at time 10 when it is connected to p4 by edge [p3, p4]. Thus, the 0-dimensional persistence intervals with p3
as the selected basepoint will be [0, ∞) and [ 92 , 10).

Lastly, with p4 as the selected basepoint, the filtration value of p4 will be 11
2 , the filtration value of p1

and p2 will be 0, and the filtration value of p3 will be 1
2 . The edges [p1, p2], [p2, p3] and [p1, p3] will all have 

filtration value 1, and the edge [p3, p4] will have filtration value 10. The connected components generated 
by p1 and p2 appear at time 0, and then are connected by [p1, p2] at time 1. The connected component 
generated by p3 appears at time 1

2 and similarly is connected to become a single connected component with 
p1 and p2 at time 1. Lastly, the connected component generated by p4 appears at time 11

2 and is joined with 
the other component by edge [p3, p4] at time 10. Thus, the 0-dimensional persistence intervals with p4 as 
the selected basepoint will be [0, ∞), [0, 1), [ 1 , 1), and [ 11 , 10).
2 2
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Fig. A.12. Fig. 8 persistence diagram with central basepoint.

Next, we need to compute the persistence intervals for Q with the various choices of basepoint. This 
computation follows the previous persistence interval computation very closely, so we simply state the 
persistence intervals for Q. With q1 or q2 as the selected basepoint, the 0-dimensional persistence intervals 
for Q will be [0, ∞) and [4, 8). With q3 as the selected basepoint, the intervals will be [0, ∞) and [ 72 , 8). 
Lastly, with q4 as the selected basepoint, the intervals will be [0, ∞), [0, 1), [ 12 , 1), and [ 92 , 8).

We now compute the bottleneck distances for the pairs of basepoints in R1. For the pair (p1, q1), the two 
[0, ∞) intervals are matched, and the interval [5, 10) for P is matched with the interval [4, 8) for Q, yielding 
CΨecc,0(p1, q1) = 1. The matching is the same to compute CΨecc,0(p2, q2) = 1. For the pair (p3, q3), the two 
[0, ∞) intervals are matched, and the interval [ 92 , 10) for P is matched with the interval [ 72 , 8) for Q, yielding 
CΨecc,0(p3, q3) = 1. Lastly, for the pair (p4, q4), the intervals [0, ∞), [0, 1), and [ 12 , 1) appear once for both 
P and Q and are thus matched with their duplicate. The interval [ 112 , 10) for P is then matched with the 
interval [ 92 , 8) for Q and this matching then yields CΨecc,0(p4, q4) = 1. Thus, for R1 we get:

max
(x0,y0)∈R1

CΨecc,0(x0, y0) = 1

Now consider another correspondence, R2 = {(p1, q3), (p2, q2), (p3, q1), (p4, q4)}. For the pair (p3, q1), we 
have the two [0, ∞) intervals matching with each other. This leaves us with the interval [ 92 , 10) for P and 
[4, 8) for Q. These intervals are matched together, yielding CΨecc,0(p3, q1) = 3

2 . However, this means that

max
(x0,y0)∈R2

CΨecc,0(x0, y0) ≥
3
2 > 1 = max

(x0,y0)∈R1
CΨecc,0(x0, y0)

This shows that only considering a minimal correspondence is important in the definition of stability 
for basepoint filtration functors. For another example to consider, take a finite metric space with three or 
more points. Then even though the Gromov-Hausdorff distance between this space and itself is 0, for a 
correspondence that does not match points with themselves, it is possible that CΨecc,0(x0, y0) > 0, which 
would mean stability is not possible.

A.2. Eccentricity on a Fig. 8

An elementary example which gives a good basis for understanding for the eccentricity basepoint filtration 
is a Fig. 8. The finite metric space used for this code is a discrete Fig. 8 with 400 points equipped with the 
restriction of the geodesic distance. In Figs. A.12, A.13, and A.14, on the left we see the plot of the metric 
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Fig. A.13. Persistence diagram with offset basepoint.

Fig. A.14. Fig. 8 persistence diagram with outer basepoint.

space, with the red point in the center indicating that this is the selected basepoint. The other points are 
then colored, with the darker blue points close to the basepoint, and the lighter yellow points being further 
away. On the right, we see the one-dimensional persistent barcodes of this space. It is not possible to tell 
visually, but there are two 1-dimensional persistent homology intervals; each corresponding to one of the 
loops from the circles.

This is what we would expect for the 1-dimensional persistent homology of a Fig. 8 through “standard” 
filtration methods such as Vietoris-Rips, since there are clearly two loops and both have equal size. However, 
as we move the basepoint around one of the circles, the persistent homology of the new filtration changes. 
In Fig. A.13, we see what happens when the selected basepoint (highlighted in red) is moved up along one 
of the circles.

We see in this image that one of the 1-dimensional persistence intervals is shrinking, while the other 
maintains the same length. The eccentricity filtration treats simplices far away from the basepoint like the 
Vietoris-Rips filtration, whereas simplices close to the basepoint are dominated by the eccentricity term. 
Thus the shrinking persistence interval corresponds to the loop on which the basepoint rests. The unchanging 
persistence interval then corresponds to the loop disjoint from the basepoint. As the basepoint continues 
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further from the center, one of the persistence intervals disappears. This can be seen in Fig. A.14, where 
the basepoint is on the outer edge of the Fig. 8.
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