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Abstract—We provide a characterization of two types of
directed homology for fully-connected, feedforward neural net-
work architectures. These exact characterizations of the directed
homology structure of a neural network architecture are the
first of their kind. We show that the directed flag homology of
deep networks reduces to computing the simplicial homology of
the underlying undirected graph, which is explicitly given by
Euler characteristic computations. We also show that the path
homology of these networks is non-trivial in higher dimensions
and depends on the number and size of the layers within the
network. These results provide a foundation for investigating
homological differences between neural network architectures
and their realized structure as implied by their parameters.

I. INTRODUCTION

Deep neural networks have emerged as an effective class of

machine learning algorithms across a wide range of domains [1].

The superior performance of these algorithms in comparison to

other traditional machine learning methods may be attributed

to their structure, consisting of a layer-wise composition of

nonlinear functions parameterized by a set of real-valued weight

matrices which define connectivity between layers [2], [3].

These parameters, governing connectivity and information

flow within the network, can then be optimized by gradient

descent for performance on a given task. For certain tasks,

enforcing particular connectivity patterns by altering the net-

work architecture can benefit the performance of the algorithms.

These architectural priors are relevant to the functionality of

deep neural networks on particular tasks as they define a
priori a partitioning of the input information as it is processed

throughout the network. Because the architecture is fixed

during training, gradient descent searches for an optimal

parameterization for the task given this connectivity structure.

While certain connectivity biases have proven successful

in various domains [4], [5], the problem of defining an

optimal connectivity pattern for a given task is still an open

one. Neural architecture search [6] attacks this problem by

attempting to optimize over network architectures using a

variety of search strategies. However, the space of possible

architectures is combinatorially large. This fact, combined with

the high computational costs of training a single architectural

instantiation on a task, means these search methods are severely

restricted in their ability to properly span the possible space

of network architectures. Better topological priors on optimal

connectivity for a given task are needed to better constrain

this search space. Recent work has shown that even in popular

network architectures that achieve near-optimal performance

on a task, a substructure with a drastically reduced parameter

set that achieves similar task performance is likely to exist

[7]. This result, in combination with the effectiveness of

pruning techniques [8], [9], implies that many neural networks

are overparameterized by architectures that do not properly

constrain the partitioning of the input across the network.

However, gradient descent is still able to approximate this

optimal topology, and this is reflected within the trained

parameters of the network [7]. A method for determining

the extent to which network-topological structures of a trained

network differ from the topological structure implied by its

architecture can provide insight on the proper connectivity

structure for a given task. We provide an initial step in this

direction with the characterization of two directed homologies

of fully-connected neural networks. This framework provides

the means to compare the actualized connectivity structure of

parameterized neural networks to the homological structure

defined by their architectures.

Understanding the topological structure of the network

architecture naturally translates to a question of understanding

the topological structure of the underlying directed graph.

Recent developments in this direction with strong mathemat-

ical foundations include the theories of path homology and

directed flag complex (DFC) homology. Path homology was

developed by Grigor’yan, Lin, Muranov, and Yau [10], and an

accompanying theory of digraph homotopy was later developed

in [11]. This in turn was consistent with earlier notions of

homotopy of graphs [12]. DFC homology was popularized

via [13], and is built on top of a notion of ordered simplicial

homology that has concrete mathematical foundations [14]. In

both of these cases, persistent-homological frameworks have

been developed recently [15], [16]. These recent developments

have thus provided novel tools for approaching the problem

of understanding neural architecture.

A. Contributions and statement of results

In this paper, we provide a characterization of the reduced

path homology of fully-connected, feedforward neural networks

(i.e. multilayer perceptrons (MLPs)) in terms of their architec-

ture. This exact characterization of the path homology structure

of a neural network is the first of its kind. Additionally, we

provide a characterization of the DFC homology of MLPs,

and show that it reduces to computing simplicial homology

of the underlying undirected graph viewed as a simplicial

complex. These results provide a starting point for investigating
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differences between the inherent homological structure of

a neural network architecture versus its realized (persistent)

homological structure as implied by its learned parameters.

Specifically, let K→
n1,...,nL

denote the directed acyclic graph

corresponding to the architecture of an MLP with L layers of

widths {n1, n2, . . . , nL}. See Figure 1 for an example. Indi-

vidual layers (as sets of vertices) are denoted K1,K2, . . . ,KL.

In graph-theoretic terms, K→
n1,...,nL

has node set ∪L
i=1Ki and

edge set {(v, v′) : v ∈ Ki, v
′ ∈ Ki+1, 0 ≤ i ≤ L − 1}.

Also let Kn1,...,nL
denote the underlying undirected graph,

viewed as a simplicial complex. We show that K→
n1,...,nL

has nontrivial reduced path homology (with field coefficients)

precisely in degree (L− 1), and that this homology group has

rank
∏L

i=1(ni − 1).

Theorem 1. Let K→
n1,...,nL

be the MLP with L layers of widths
{n1, n2, . . . , nL}. Then we have

rank
(
PathHomp(K

→
n1,...,nL

)
)
= δL−1

p

L∏
i=1

(ni − 1).

Additionally, we show that the DFC homology of K→
n1,...,nL

reduces to the simplicial homology (denoted HΔ
p ) of Kn1,...,nL

,

which in turn counts the number of loops in Kn1,...,nL
.

Theorem 2. We have

rank
(
DFCHomp(K

→
n1,...,nL

)
)
= rank

(
(HΔ

p (Kn1,...,nL
)
)
).

Specifically, this rank is 1 for p = 0, (1 − #V + #E) for
p = 1, and 0 for p ≥ 2. Here #V and #E are the numbers
of vertices and edges, respectively.

Stated differently, Theorem 2 shows that DFCHom picks

out the structure of (undirected) loops in the MLP architecture.

II. RELATED WORK

Work on homological approaches to neural network analyses

have shown promise in the ability to extract insights about

network function through the investigation of topological

structure of network parameters [17], [18], [19], [20], [21],

[22], [23], [24]. In [25], the authors find that analyzing the 0-

dimensional persistent-homological structure of neural network

parameters during training provides insight into when the

training process may be considered completed. Similarly,

the authors of [26] analyze the 0-dimensional persistent-

homological structure of neural network activations and find

that this structure is closely linked to the representations used by

the network to make classification decisions. Both of the above

papers make use of a Vietoris-Rips filtration over the graph

defined by the network architecture. Notably, this filtration

does not preserve the inherent directionality of the network

defined by sequential layers. The asymmetry arising from

directionality within the network is important to capture in

order to faithfully represent the homological properties of the

flow of information through each layer. The papers also lack

a homological basis from which to compare the persistent

homological structures that emerge as weights are thresholded

to the inherent network homology. Our result in Section I-A

provides such a homological basis for path homology of fully-

connected neural networks from which one may compare

the actualized homological structure of the weighted network

versus the homological structure defined by its architecture.
The prior discussion relates to investigating the topological

structure of the network architecture; there have also been

very recent developments showing how to backpropagate

a topological loss function through a deep neural network

[20], [27]. These techniques build on insights developed

throughout [28], [29], [30]. While our methods are grounded

in constructions arising from topology, a geometric viewpoint

of ReLU deep networks has been introduced in [31].

III. PRELIMINARIES

In this section, we provide background material on homology,

path homology, and DFC homology. We refer the reader to

[14] for additional details on homology (specifically §1.13 for

ordered homology), [13] for details on DFC homology, and

[11] for details on path homology.
We write Z+ to denote the nonnegative integers. Fix a field

K. A chain complex is defined to be a sequence of vector spaces

(Cp)p∈Z over K and boundary maps (∂p : Cp → Cp−1)k∈Z
satisfying the condition ∂p−1 ◦ ∂p = 0 for each p ∈ Z. We

often denote a chain complex as C = (Cp, ∂p)p∈Z. Given a

chain complex C and any p ∈ Z, one defines the following:

Zp(C) := ker(∂p) = {c ∈ Ck : ∂p(c) = 0} , the p-cycles,

Bp(C) := im(∂p+1) = {c ∈ Cp : c = ∂p+1(b) for some

b ∈ Cp+1}, the p-boundaries.

The quotient vector space Hp(C) := Zp(C)/Bp(C) is called

the p-th homology vector space of the chain complex C. The

dimension of Hp(C) is called the p-th Betti number of C,

denoted βp(C). These vector spaces can be made to arise from

data via the following construction.
A simplicial complex Σ built on a set S is (abstractly) a

collection of subsets σ ⊆ S such that whenever τ ⊆ σ ∈ Σ,

we have τ ∈ Σ. The (p+1)-length elements of Σ are referred

to as p-simplices. The elements of a simplex are called vertices.

We additionally fix an arbitrary total ordering on S. Different

orderings of the vertices of a simplex are considered equivalent

if they differ by an even permutation. Thus a p-simplex σ ∈ S
for p ≥ 1 belongs to two equivalence classes, and each class

is called an orientation of σ. For each p ∈ Z+, we write Σp

to denote the p-simplices of Σ.
The standard construction of a chain complex from a

simplicial complex is obtained by defining Cp(Σ) to be the

free vector space over Σp for each p ≥ 0, with coefficients

in K, along with the relation σ = −τ if τ differs from σ by

an odd permutation. Additionally one defines C−1(Σ) = K

and Cp(Σ) = {0} for p ≤ −2 (this corresponds to reduced
homology). Finally, for any p ∈ Z+, one defines a linear map

∂p : Cp → Cp−1 to be the linearization of the following map

on the generators of Cp:

∂p([x0, . . . , xp]) :=

p∑
i=0

(−1)i[x0, . . . , x̂i, . . . , xp], (1)
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for each p-simplex [x0, . . . , xp] ∈ Cp. Here x̂i denotes

omission of xi from the sequence. Additionally, ∂p is defined

to be the zero map for p ≤ −1. These constructions fully

determine simplicial homology, which we denote by HΔ
p .

An undirected graph G = (V,E) has a natural representation

as a simplicial complex: the nodes are 0-simplices, and

the edges are 1-simplices. There are no higher-dimensional

simplices. We write Σp(G) to denote the p-simplices of G.

A. Path homology

Given a finite set X and any integer p ∈ Z+, an elementary
p-path over X is a sequence (x0, . . . , xp) of p+ 1 elements

of X . For each p ∈ Z+, the free vector space consisting of

all formal linear combinations of elementary p-paths over X
with coefficients in K is denoted Λp = Λp(X) = Λp(X,K).
One also defines Λ−1 := K and Λp := {0} for p ≤ −2.

The boundary maps are defined as in Equation (1), and we

overload notation to denote them by ∂p as before. It follows

that (Λp, ∂p)p∈Z is a chain complex.

Next let G = (X,E) be a digraph. For each p ∈ Z+, one

defines an elementary p-path (x0, . . . , xp) on X to be allowed
if (xi, xi+1) ∈ E for each 0 ≤ i ≤ p − 1. For each p ∈ Z+,

the free vector space on the collection of allowed p-paths on

(X,E) is denoted Ap = Ap(G) = Ap(X,E,K), and is called

the space of allowed p-paths. One further defines A−1 := K

and Ap := {0} for p ≤ −2.

The allowed paths do not form a chain complex, because

the image of an allowed path under ∂ need not be allowed.

This is rectified as follows. Given a digraph G = (X,E) and

any p ∈ Z, the space of ∂-invariant p-paths on G is defined

to be the following subspace of Ap(G):

Ωp = Ωp(G) = Ωp(X,E,K) := {c ∈ Ap : ∂p(c) ∈ Ap−1} .
It follows by the definitions that im(∂p(Ωp)) ⊆ Ωp−1 for any

integer p ≥ −1. Thus we have a chain complex:

. . .
∂3−→ Ω2

∂2−→ Ω1
∂1−→ Ω0

∂0−→ K
∂−1−−→ 0

For each p ∈ Z+, the p-dimensional (reduced) path
homology groups (denoted HΞ

p ) of G = (X,E) are defined as:

HΞ
p (G) = HΞ

p (X,E,K) := ker(∂p)/ im(∂p+1).

Note that this definition of path homology is slightly different

from the convention in [11], where path homology refers to a

version of the above (the non-reduced version) where Ω−1 is

defined to be {0}.

B. Directed flag complex homology

The directed flag complex of a directed graph G = (X,E) is

the collection of finite sequences (x0, x1, . . . , xn), for n ∈ Z+,

such that xi → xj whenever i < j. Such finite sequences are

referred to as directed n-simplices. For each p ∈ Z+, we write

F := Fp(G) to denote the free vector space over directed

p-simplices in G. Then the boundary map ∂ from Equation

(1) can be overloaded to give a map ∂p : Fp → Fp−1. The

directed flag complex (DFC) homology (denoted HF
p ) of G is

then defined as:

HF
p (G) = HF

p (X,E,K) := ker(∂p)/ im(∂p+1).

IV. DFC HOMOLOGY OF MLPS

Proof of Theorem 2. First we observe that Fp(K
→
n1,...,nL

) =
{0} for each p ≥ 2, as there are no “skip connections” from

any layer i to a layer i+j for j ≥ 2. The remainder of the proof

will occur at the level of chain complexes, so we introduce

some notation for convenience. We write CF∗ to denote the

chain complex arising from F∗(K→
n1,...,nL

), and CΔ
∗ to denote

the chain complex arising from Σ∗(Kn1,...,nL
). Also let ∂Fp

denote the boundary map applied to CFp and let ∂Δ
p denote

the boundary map applied to CΔ
p . We will typically overload

notation and just use ∂, but the distinction will occasionally

be used to clarify context. It is immediate that CFp = CΔ
p for

p ≤ 0 and p ≥ 2, so we only verify this equality for p = 1.

Note that CF1 is generated by elements of the form (v, v′)
where v → v′, and CΔ

1 is generated by elements of the

form [v, v′] where either v → v′ or v′ → v. By using the

identity [v, v′] = −[v′, v], we write each chain σ ∈ CΔ
1 as

σ =
∑k

i=1 ci[ui, u
′
i], where ui → u′i. The crucial point is that

in an MLP, we will only have either v → v′ or v′ → v, but not

both. Thus the chains of CΔ
1 as written above are exactly the

chains of CF1 , and the boundary maps are exactly the same for

both CF1 and CΔ
1 . Thus we have HΔ

p = HF
p for p ≥ 0. The

second statement follows from standard results on the Euler

characteristic of a connected graph.

V. PATH HOMOLOGY OF MLPS

Prior to providing the proof of Theorem 1, we digress

briefly to highlight an interesting connection. The theory

of path homology admits Künneth formulas for various

digraph constructions [32], and one might expect that the

layered construction of feedforward neural networks would be

amenable to applying such formulas. Indeed, when restricted

to feedforward network architectures having two layers, the

Künneth formula for join applies to give the result in Theorem

1. However, this approach seems not to work for networks with

more layers. The immediate obstruction is that feedforward

networks with more than two layers do not arise as the join

of the individual layers.

Attempts to prove a Künneth formula for a generalized

version of digraph join also seem to fail due to the structure

of the boundary map ∂p. Except for this failure (which is not

obvious), a simple proof strategy along the following lines

would appear convincing at first: introduce an L-ary digraph

join and appeal to associativity of tensor products (or more

elaborately, to an L-ary Künneth formula [33]) to argue that

rank
(
HΞ

p (K
→
n1,...,nL

)
)

=
∑

α∈NL:
∑L

�=1 α�=p−(L−1)

L∏
�=1

rank
(
HΞ

α�
({1, . . . , n�})

)
.

From here, the desired result would follow from a straightfor-

ward calculation. It would thus be interesting to see if such a
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Künneth formula could provide an alternative proof of Theorem

1. We remark that Künneth formulae in persistent homology
have been studied in [34], [35].

We now proceed to the proof of Theorem 1.

Lemma 3 (Product rule, [32]). Let u ∈ Λp and v ∈ Λq . Then:

∂(uv) = (∂u)v + (−1)p+1u(∂v).

Notation. We adopt some extra notation for readability. Given

(the underlying digraph of) an MLP K→
n1,...,nL

, we write AL
p

to denote Ap(K
→
n1,...,nL

). We define ΩL
p and ∂L

p analogously.

Recall that Ki denotes the ith layer of K→
n1,...,nL

.

To prove the theorem, we need to understand the kernel of

∂L
L−1. The next proposition gives a representation of each such

kernel element in terms of an (L− 1)-layer MLP.

Proposition 4. Consider the map ∂L
L−1 defined on ΩL

L−1. Any
element γ ∈ ker(∂L

L−1) can be written as a finite sum

γ =

d∑
i=1

wivi, wi ∈ ker(∂L−1
L−2), vi ∈ KL, d ≥ 1.

Proof. By the structure of K→
n1,...,nL

, all (L− 1)-paths have

the form (v(1)v(2) . . . v(L)), where each v(i) ∈ Ki. Thus any

element in ker(∂L
L−1) has the form

γ =

d∑
i=1

wivi ∈ ΩL−1(K
→
n1,...,nL

), wi ∈ AL−1
L−2, vi ∈ KL.

Here we assume WLOG that the vi are distinct. By Lemma 3:

0 = ∂(γ) =
d∑

i=1

(∂wi)vi + (−1)L−1wi.

By linear independence, we must have (−1)L−1
∑d

i=1 wi = 0

and
∑d

i=1(∂wi)vi = 0. Since the vi are all distinct, we have

∂wi = 0 and hence wi ∈ ker(∂L−1
L−2) for each 1 ≤ i ≤ d. This

concludes the proof.

The next proposition further clarifies the preceding repre-

sentation as a difference of basis terms.

Proposition 5. Consider the map ∂L−1
L−2 defined on ΩL−1

L−2, and
let BL−2 be a basis for ker(∂L−1

L−2). Let γ ∈ ker(∂L
L−1). Then

we can write

γ =

|BL−2|∑
i=1

|KL|∑
j,k=1

cijkui(vj − vk),

where cijk ∈ K, ui ∈ BL−2, and vj , vk ∈ KL.

Proof. Using Proposition 4, we write γ =
∑d

i=1 ciuivi, where

d ≥ 1, ci ∈ K, ui ∈ BL−2, and vi ∈ KL. This allows for

degeneracy, in the sense that we may have ui = uj for i 	= j,

and likewise for ci and vi. By Lemma 3, we obtain 0 = ∂(γ) =∑d
i=1 ciui. Here we have used the relation ∂(ui) = 0.

Next fix i = 1, and let I1 ⊆ {1, 2, . . . , d} denote the indices

j for which uj = u1. Since
∑d

i=1 ciui = 0, we have by

linear independence that
∑

j∈I1 cj = 0. Next let I+1 
 I−1 be a

partition of I1 into nonempty sets. Then we have
∑

j∈I+
1
cj =∑

k∈I−1 −ck by the preceding observation. It follows that∑
j∈I1

cjujvj =
∑
j∈I1

cju1vj =
∑
j∈I+

1

cju1vj −
∑
k∈I−1

(−ck)u1vk.

We would like to write the latter as a sum of elements of

the form cjku1(vj − vk). The problem of determining the

coefficients cjk can be phrased as a supply-demand problem,

and we present this next. For now we assume
∑

j∈I+
1
cj =∑

k∈I−1 −ck 	= 0.

Define the supply vector r to be an |I+1 | × 1 column vector

with entries cj , j ∈ I+1 . Also define the demand vector s to be

the 1 × |I−1 | row vector with entries −ck, k ∈ I−1 . We need

to construct a nonnegative |I+1 | × |I−1 | matrix T 1 with row

and column sums equal to r and s, respectively. Define T 1 by

writing T 1
jk := rjsk/

∑
l∈I+

1
cl for each j, k.

To verify that T 1 has the desired row and column sums,

recall that
∑

k∈I−1 sk =
∑

k∈I−1 −ck =
∑

j∈I+
1
cj , and so∑

k∈I−1

T 1
jk = rj

∑
k∈I−1

sk/
∑
l∈I+

1

cl = rj
∑
j∈I+

1

cj/
∑
l∈I+

1

cl = rj .

Similarly, recall
∑

j∈I+
1
rj =

∑
j∈I+

1
cj , and so∑

j∈I+
1

T 1
jk = sk

∑
j∈I+

1

rj/
∑
l∈I+

1

cl = sk
∑
j∈I+

1

cj/
∑
l∈I+

1

cl = sk.

Thus we obtain:∑
j∈I+

1

cju1vj −
∑
k∈I−1

(−ck)u1vk =
∑
j∈I+

1

∑
k∈I−1

T 1
jku1(vj − vk).

It may be the case that vj = vj′ for j 	= j′ ∈ I+1 , and likewise

for I−1 . By summing such terms and by padding T 1 with zeros

if necessary, we create a |KL| × |KL| matrix C1 satisfying:

∑
j∈I+

1

∑
k∈I−1

T 1
jku1(vj − vk) =

|KL|∑
j,k=1

C1
jku1(vj − vk). (2)

Now we return to the case
∑

j∈I+
1
cj =

∑
k∈I−1 −ck =

0. In this case, we further subdivide I+1 into nonempty sets

I++
1 
 I+−1 . If

∑
j∈I++

1
cj =

∑
k∈I+−

1
−ck 	= 0, then we can

proceed as before to obtain a decomposition as in Equation

(2), and otherwise we can continue subdividing the index

set. Since there are only finitely many terms, the subdivision

operation must terminate in a finite number of steps. Similarly

one subdivides I−1 as necessary to collect terms in the form

of Equation (2).

Repeating this process for i = 2, . . . , d, we obtain:

γ =
d∑

i=1

ciuivi =

|BL−2|∑
i=1

|KL|∑
j,k=1

Ci
jkui(vj − vk).

Proposition 6. Given the setup of Proposition 5 and γ ∈
ker(∂L

L−1), we can further write:

γ =

|BL−2|∑
i=1

|KL|∑
j=2

cijui(v1 − vj),
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where cij ∈ K, ui ∈ BL−2, and vj ∈ KL. Consequently,
BL−1 := {ui(v1 − vj) : ui ∈ BL−2, 2 ≤ j ≤ |KL|} forms a
basis for ker(∂L

L−1).

Proof. We repeat the first few steps of Proposition 5; namely

we use Proposition 4 to write γ =
∑d

i=1 ciuivi, observe∑d
i=1 ciui = 0, and collect ui terms to write

γ =

|BL−2|∑
i=1

ui

|KL|∑
j=1

cijvj .

We further write

γ =

|BL−2|∑
i=1

ui

⎛
⎝|KL|∑

j=1

cij(vj − v1) +

|KL|∑
j=1

cijv1

⎞
⎠

and observe that, by the preceding observation:

|BL−2|∑
i=1

ui

|KL|∑
j=1

cijv1 =
d∑

i=1

ciuiv1 = 0.

Proposition 7. Let K be a two-layer MLP, and consider
the boundary map ∂2

1 on Ω1(K). Let u1, u2, . . . , un1
and

v1, v2, . . . , vn2
denote the vertices of the first and second

layers of K, respectively. Then ker(∂2
1) is generated by the

elements {(u1 − uj)(v1 − vk) : 2 ≤ j ≤ n1, 2 ≤ k ≤ n2}. In
particular, dim(ker(∂2

1)) = (n1 − 1)(n2 − 1).

Proof. Let K1 denote the first layer of K, and recall that

∂1
0 denotes the boundary map defined on Ω0(K1). Since we

are computing reduced homology, ker(∂1
0) is generated by

elements of the form uj − uk. We rewrite this as uj − uk =
uj −u1+u1−uk = −(u1−uj)+(u1−uk). Thus a basis for

ker(∂1
0) is given by {u1 − uj : 2 ≤ j ≤ |K1|}. An application

of Proposition 6 completes the proof.

Proposition 8. Given an MLP K→
n1,...,nL

with L layers, we
have ker(∂L

j ) = im(∂L
j+1) for each 0 ≤ j ≤ L− 2.

Proof. Let 0 ≤ j ≤ L− 2, and let γ ∈ ker(∂L
j ). Then γ is a

linear combination of paths of length (j+1). The endpoints of

these paths may belong to layers Kj+1, . . . ,KL. By collecting

paths ending at the same layer, write γ =
∑L

l=j+1 γl, where

each γl consists of the summands of γ ending at Kl (and is 0

if there are no such summands). By linear independence, we

must individually have ∂(γl) = 0 for each k + 1 ≤ l ≤ L.

Let k + 1 ≤ l < L, and let zl+1 ∈ Kl+1. By Lemma 3,

∂(γlzl+1) = (∂γl)zl+1 + (−1)j+1γl(∂zl+1) = (−1)j+1γl.

Next fix l = L, and note that γL is a linear combination of

paths that start at KL−j and end at KL. Fix z′ ∈ KL−(j+1).

Then we have:

∂(z′γL) = (∂z′)γL + (−1)z′(∂γL) = γL.

Finally define ζ =
∑L−1

l=j+1(−1)j+1γlzl+1 + z′γL. By

the previous work, we have ∂(ζ) =
∑L

l=j+1 γl = γ. By

construction, ζ ∈ ΩL
j+1. This shows that ker(∂L

j ) = im(∂L
j+1)

and concludes the proof.

Fig. 1. (L) A MLP with L = 3 layers and (n1, n2, n3) = (4, 10, 3), with
weight magnitudes indicated by arc thickness and signs indicated by color (red
= negative; blue = positive). (R) A subgraph obtained by removing weights
with magnitude below the median.

Fig. 2. Path homology Betti numbers βp of a trained 3-layer fully-connected
network ((n1, n2, n3) = (4, 10, 3)) across normalized weight magnitude
thresholds and for 10 realizations of random initial weights. The distribution
of Betti numbers is indicated by opacity. The threshold normalization sends
the jth smallest threshold value to j/T , where T is the number of nontrivial
threshold values. Note that the network starts with path homology concentrated
in degree 2, as predicted by Theorem 1. Surprising features include the gradual
downward cascade of β2 as well as the “bump” in β1.

Now we proceed to the proof of Theorem 1.

Proof. K→
n1,...,nL

has no j-paths for j ≥ L. Thus by Propo-

sition 8, there can only be nontrivial reduced path homology

in degree L − 1. Applying Proposition 6 inductively while

using Proposition 7 as a base case, we see that ker(∂L
L−1) has

dimension
∏L

i=1(ni − 1). Since there are no L-paths, im(∂L
L)

is trivial. The result follows.

VI. DISCUSSION

In this work, we provide characterization results for two types

of digraph homologies as applied to feedforward neural network

architectures. Our results show that these two homology

theories, while similar in structure, yield quite different outputs

(with different interpretations) when applied to deep networks.

From this perspective, it is important to utilize both types of

digraph homology when studying neural architectures.

As an example of the utility of path homology to characterize

neural networks, we used Fisher’s classical iris data set [36] to

train a MLP with L = 3 layers and (n1, n2, n3) = (4, 10, 3)
using MATLAB’s patternnet function. We performed

multiple training runs with different realizations of random

initial conditions. For each realization, we extracted the trained
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weight matrix A. We then computed the path homology of

the DAG obtained by removing arcs corresponding to weights

less than a given nontrivial value in A (details of this and

other experimental results obtained using the path homology

algorithm and its implementation will be provided elsewhere).

The results are shown in Figure 2. The figure shows that

the path homology of a filtered subgraph of a fully-connected

network does not suddenly vanish as edges are removed. Rather,

the Betti numbers gradually “cascade down” from top to zero

dimension. This phenomenology suggests that path homology

can give particularly detailed topological characterizations

of neural networks. For example, given a weight matrix,

the corresponding filtered (or persistent) path homology of

subnetworks obtained by restricting attention to a moving

window of a few adjacent layers can help identify notional

sub-networks that exhibit functional specificity.

With further homological characterization of directed graph

motifs like those presented in this paper, persistent homolog-

ical structure derived empirically from analyses of network

parameters can be related back to network architectures. This

link between parameterized neural network topology and

neural network architecture provides actionable insight in the

architectural design process and can constrain the architecture

search space, as one can define architectures that a priori better

suit the observed homological structure learned by a network

for a given task.
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and künneth formulas,” Comm. Anal. Geom., vol. 25, p. 969, 2017.
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