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We define a metric—the network Gromov–Wasserstein distance—on weighted, directed networks that is
sensitive to the presence of outliers. In addition to proving its theoretical properties, we supply network
invariants based on optimal transport that approximate this distance by means of lower bounds. We test
these methods on a range of simulated network datasets and on a dataset of real-world global bilateral
migration. For our simulations, we define a network generative model based on the stochastic block
model. This may be of independent interest for benchmarking purposes.
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1. Introduction

1.1 Motivation and related literature

Advances in data mining are beinning to lead to the acquisition of large networks that are directed,
weighted and possibly even signed [22]. In light of the ready availability of such data, a natural problem
is to devise methods for comparing network datasets. These methods in turn lead to a wide range
of applications. An example is the network retrieval task: given a database of networks and a query
network, return an ordered list of the networks in the database that are most similar to the query.
Additionally, because there may be redundant data in the networks that are not relevant to the query,
one may wish to impose a notion of significance to certain substructures of the query network. The task
then is to retrieve networks that are similar to the query network both globally and also at the scale of
relevant substructures.

While there has been some work in devising directed, weighted analogues of conventional network
analysis tools such as edge overlap and clustering coefficients, we are more interested in pairwise
comparison of individual networks. The intuitive idea behind this comparison is to search for the best
possible alignment of edges (according to weights) while simultaneously aligning nodes with similar
significance.

Techniques based on optimal transport (OT) provide an elegant solution to this problem by endowing
a network with a probability measure. The user adjusts the measure to signify important network
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2 S. CHOWDHURY AND F. MÉMOLI

substructures and to smooth out the effect of outliers. This approach was adopted in [15] to compare
various real-world network datasets modelled as metric measure (mm) spaces—metric spaces equipped
with a probability measure. This work was based in turn on the formulation of the Gromov–Wasserstein
(GW) distance between mm spaces presented in [20,21]. Specifically, this setting considered triples
(X, dX , μX) where (X, dX) is a compact metric space and μX is a Borel probability measure.

Exact computation of GW distances amounts to solving a non-convex quadratic program. Towards
this end, the computational techniques presented in [20,21] included both readily computable lower
bounds and an alternate minimization scheme for reaching a minimum of the GW objection function.
This alternate minimization scheme involved solving successive linear optimization problems, and was
used for the computations in [15].

An alternative definition of the GW distance due to Sturm (the transportation formulation) appeared
in [32], although this formulation is less amenable to practical computations than the one in [20] (the
distortion formulation). Both the transportation and distortion formulations were studied carefully in
[20,21,33]. It was further observed by Sturm in [33] that the definition of the (distortion) GW distance
can be extended to gauged measure spaces of the form (X, d̂X , μX). Here X is a Polish space, d̂X is a
symmetric L2 function on X × X (that does not necessarily satisfy the triangle inequality) and μX is a
Borel probability measure on X. These results are particularly important in the context of the current
paper. From here on, we always refer to the distortion formulation of the GW distance.

Sturm’s work in [33] showed that while the collection of isomorphism classes of metric measure
spaces is not complete, elements in its completion can be represented by triples (X, d̃X , μX) where
X, μX are as above, and d̃X is a symmetric, measurable, square integrable function satisfying the triangle
inequality almost everywhere. He further showed that the ambient space of gauged measure spaces,
which is interpreted as being ‘more linear’ due to giving up the triangle inequality, admits explicit
descriptions of geometric properties.

In Sturm’s work, symmetry is desirable because, for example, it allows an easy definition of open
balls, whose volume growth is of theoretical interest (the asymmetric case would require ‘forward-open’
and ‘backward-open’ balls). However, practical data are often characterized by lack of symmetry, e.g.
inhibitory/excitatory effects in neurons, unidirectional gene regulation in cell signalling pathways and
human migration between countries. The asymmetric case is of primary interest in the current work.

From now on, we reserve the term network for network datasets that cannot necessarily be
represented as metric spaces, unless qualified otherwise. An illustration is provided in Fig. 1. Already
in [15], it was observed that numerical computation of GW distances worked well for comparing
graph-structured data even when the underlying datasets failed to be metric. This observation was
further developed in [24], where the focus from the outset was to compute the GW distance (and
related discrepancies) between arbitrary matrices, i.e. what we refer to as finite networks. While the
experiments of [24] were on symmetric datasets, their implementations remain valid and theoretically
justified even on matrices that do not satisfy symmetry. We emphasize this point in the current work,
and extend from matrices to the continuous setting. Thus this work should be viewed as a theoretical
complement to [24].

On the computational front, the authors of [24] directly attacked the non-convex optimization
problem by considering an entropy-regularized form of the GW distance (ERGW) following [31], and
using a projected gradient descent algorithm based on results in [3,31]. This approach was also used
(for a generalized GW distance) on graph-structured datasets in [35]. It was pointed out in [35] that
the ERGW approach occasionally requires a large amount of regularization to obtain convergence, and
that this could possibly lead to over-regularized solutions. A different approach, developed in [20,21],
considers the use of lower bounds on the GW distance as opposed to solving the full GW optimization
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 3

Fig. 1. The networks in this work have asymmetric pairwise weights and a significance value for each node.

problem. This is a practical approach for many use cases, in which it may be sufficient to simply
obtain lower bounds for the GW distance. One of the lower bounds in [20] involved linearizing the
GW objective by decoupling the alignment term into two separate terms (thus removing the quadratic
dependence), and optimizing over each term separately (referred to as the Third Lower Bound (TLB)).
This approach was also used in [27], with a further relaxation of one of the marginal terms.

As a complement to the alternate minimization scheme of [21] and the ERGW scheme of [24], our
numerical experiments are carried out using the lower bound approach, specifically the (TLB). This is
certainly faster than alternate minimization (see [15] for computational aspects), but potentially slower
than the ERGW scheme of [24]. However, it has the benefit of not needing any parameter tuning, which
is an issue with entropic regularization. This makes it useful for exploratory network data analysis.

1.2 Contributions

We adopt the setting of networks (X, ωX , μX), where X is a Polish space, μX is a Borel probability
measure and ωX is any measurable, integrable function on X × X (decoupled from the topology of
X beyond Borel measurability). Using the GW distance formulation, we define and develop a metric
structure on the ‘space of networks’. The crux of this construction is that many of the critical theoretical
developments in [20,21,33] rely on measure-theoretic properties and not metric properties, hence they
extend to the ambient space of networks. Certain interpretations and results cannot carry over: typically
these are the statements involving volumes of open balls, which are hard to define in the asymmetric
setting. The main algorithms of [24,31] for computing local minima of the ERGW objective do carry
over to the network setting.

To complement these algorithms, we adapt ideas from [20,21] to obtain network invariants/features
that yield a hierarchy of lower bounds on the network GW distance. The lower bounds arise from
satisfying a certain stability property, and are computed by solving (at most) a linear program. In
experiments, we focus particularly on the (TLB) from [20].

We strengthen some of the inequalities in the lower bound hierarchy to equalities (Theorem 3.1).
As a consequence, we see that the (TLB), which involves solving an ensemble of OT problems over a
Polish space X × Y , can be computed by solving OT problems over R (R-TLB). These can be directly
computed via closed-form solutions.

We also define a network Gromov–Prokhorov (GP) distance, propose a new class of invariants
(the ‘sublevel/superlevel size functions’) and use the GP distance to show that these new invariants
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4 S. CHOWDHURY AND F. MÉMOLI

satisfy a notion of interleaving stability typically arising in the field of applied topology. We exhibit
the theoretical utility of these invariants by using them to distinguish between spheres of different
dimensions.

Finally, we illustrate our constructions on some highly asymmetric networks (both simulated and
real). Our code and datasets are available on https://github.com/samirchowdhury/GWnets.

1.3 Organization of the paper

In the following section, we define some notation and terms that will be used throughout the paper. §2
contains details about couplings and the network GW and GP distances. In §3 we present network
invariants along with stability results. We conclude with experiments in §4. Appendix A contains
additional notes on computations.

1.4 Notation and basic terminology

We write R+ to denote the non-negative reals. The indicator function of a set S is denoted 1S. Given a
topological space X (always a Polish space in this paper, and always equipped with the Borel σ -field
Borel(X)), we will write Prob(X) to denote the collection of Borel probability measures on X. The
support of μX ∈ Prob(X), denoted supp(μX) (or supp(X) when the context is clear), is the set of x ∈ X
such that every open neighbourhood of x has positive measure. Unless specified otherwise, we will
always deal with fully supported measures. The Lebesgue measure on the reals will be denoted by L .

The product σ -field on X × Y , denoted Borel(X × Y), is defined as the σ -field generated by the
measurable rectangles A × B, where A ∈ Borel(X) and B ∈ Borel(Y). The product measure μX ⊗ μY is
defined on the measurable rectangles by writing

μX ⊗ μY(A × B) := μX(A)μX(B), for all A ∈ Borel(X) and for all B ∈ Borel(Y).

Given a Borel space (X, μX) and a Borel measurable function f : X → R, we write ‖ f ‖p :=
(
∫ | f |p dμX)1/p for p ∈ [1, ∞), and ‖ f ‖∞ := inf{M ∈ [0, ∞] : μX(| f | > M) = 0} for p = ∞. For

each p ∈ [1, ∞], Lp = Lp(μX) consists of the Borel measurable functions f with ‖ f ‖p < ∞.
Given a measurable real-valued function f : X → R and t ∈ R, we will occasionally write {f ≤ t}

to denote the set {x ∈ X : f (x) ≤ t}.
Given (X, μX), Y and a Borel-measurable map f : X → Y , the pushforward of μX via f is the

measure defined by f∗μ(A) := μ(f −1[A]) for any measurable subset of Y .

2. The structure of measure networks

We will always assume that our measures are fully supported, unless explicitly said otherwise.

2.1 Networks and isomorphism

Definition 2.1 A (measure) network is a triple (X, ωX , μX) where X is Polish, μX is a fully supported
Borel probability measure and ωX is a bounded measurable function on X2. The naming convention
arises from the case when X is finite; in such a case, we can view the pair (X, ωX) as a complete directed
graph with asymmetric real-valued edge weights that is further equipped with node significance values
given by μX , cf. Fig. 1. Accordingly, the points of X are called nodes, pairs of nodes are called edges and
ωX is called the edge weight function of X. The collection of all measure networks will be denoted N.
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 5

Remark 2.1 (Network data). A large class of objects—including metric spaces, manifolds (Riemannian
or Finslerian) and similarity/kernel matrices [24]—can be viewed as networks. Network datasets arising
in the sciences typically satisfy the regularity assumptions needed to fit the preceding definition.

We point out one caveat: network datasets in the wild are often incomplete, i.e. ωX is not fully
defined on X × X. In such cases, one needs to preprocess the data (see e.g. [18]) to make it fit within
our framework. In many other use cases, however, network datasets are complete by construction.
For example, in gene regulatory network inference [25], the only data that can be measured are gene
expression levels. In the corresponding network, the nodes are genes and the edge weights are gene
dependencies that are estimated from the expression levels. The resulting edge weight function is thus
completely determined.

Remark 2.2 Sturm has studied symmetric, L2 versions of measure networks (called gauged measure
spaces) in [33], and we point to his work as an excellent reference on the geometry of such spaces. Our
motivation comes from studying network datasets, hence the difference in our naming conventions.

When defining any type of distance between networks, as we eventually will, it is necessary to
first decide which networks should be viewed as being at 0-distance. We make these choices now. The
information contained in a network should be preserved under relabelling. Additionally, if a node is
split into multiple nodes, all with the same incoming and outgoing edge weights, the information in
the network remains unchanged. Conversely, if multiple nodes have the same incoming/outgoing edge
weights, then they can be merged together without information loss. We formalize these ideas via the
following notions of isomorphism.

Definition 2.2 (Strong isomorphism). To say (X, ωX , μX), (Y , ωY , μY) ∈ N are strongly isomorphic
means that there exists a Borel measurable bijection ϕ : X → Y (with Borel measurable inverse ϕ−1)
such that

• ωX(x, x′) = ωY(ϕ(x), ϕ(x′)) for all x, x′ ∈ X, and

• ϕ∗μX = μY .

We will denote a strong isomorphism between measure networks by X ∼=s Y .

The following definition is a relaxation of strong isomorphism.

Definition 2.3 (Weak isomorphism). (X, ωX , μX), (Y , ωY , μY) ∈ N are weakly isomorphic, denoted
X ∼=w Y , if there is a Borel probability space (Z, μZ) with measurable maps f : Z → X and g : Z → Y
such that

• f∗μZ = μX , g∗μZ = μY , and

• ‖ f ∗ωX − g∗ωY‖∞ = 0.

Here f ∗ωX : Z × Z → R is the pullback weight function given by the map (z, z′) �→ ωX( f (z), f (z′)).
The map g∗ωY is defined analogously. Note that these pullbacks are measurable. Figure 2 provides an
illustration.

Remark 2.3 (Interpretation for real data). According to the notion of weak isomorphism, two nodes
x, x′ are informally the same if they have the same ‘internal perception’, i.e. ωX(x, x) = ωX(x, x′) =
ωX(x′, x) = ωX(x′, x′), and the same external perception, i.e. all the incoming and outgoing edge weights
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6 S. CHOWDHURY AND F. MÉMOLI

Fig. 2. Weakly isomorphic networks X, Y , Z. Note that Z maps surjectively onto X and Y , and this surjection induces compatible
pushforward measures and pullback weight functions, as required by Definition 2.3.

are the same. A relaxation would be to say that x, x′ are ε-similar if, for ε > 0,

max(‖ωX(x, ·) − ωX(x′, ·)‖∞, ‖ωX(·, x) − ωX(·, x′)‖∞) < ε.

The network stochastic block model in §4.2 describes networks that admit partitions into ε-similar
blocks.

Example 2.1 Networks with one or two nodes will be very instructive in providing examples and
counterexamples, so we introduce them now with some special terminology.

• By N1(a) we will refer to the network with one node X = {p}, a weight ωX(p, p) = a and the
Dirac measure μX = δp.

• By N2

((
a b
c d

)
, α, β

)
we will mean a two-node network with node set X = {p, q}, and weights

and measures given as follows:

ωX(p, p) = a μX({p}) = α

ωX(p, q) = b μX({q}) = β

ωX(q, p) = c

ωX(q, q) = d.

• Given a k-by-k matrix Σ ∈ R
k×k and a k × 1 vector v ∈ R

k+ with sum 1, we automatically
obtain a network on k nodes that we denote as Nk(Σ , v). Notice that Nk(Σ , v) ∼=s N
(Σ

′, v′) if
and only if k = 
, and there exists a permutation matrix P of size k such that Σ ′ = P Σ PT and
Pv = v′.

Notation. Even though μX takes sets as its argument, we will often omit the curly braces and use
μX(p, q, r) to mean μX({p, q, r}).

We wish to define a notion of distance on N that is compatible with isomorphism. A natural
analogue is the GW distance defined between metric measure spaces [20]. To adapt that definition
for our needs, we first recall the definition of a measure coupling.

2.2 Couplings and the distortion functional

Let (X, ωX , μX), (Y , ωY , μY) be two measure networks. A coupling between these two networks is a
probability measure μ on X × Y with marginals μX and μY , respectively. Stated differently, couplings
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 7

satisfy the following property:

μ(A × Y) = μX(A) and μ(X × B) = μY(B), for all A ∈ Borel(X) and for all B ∈ Borel(Y).

The collection of all couplings between (X, ωX , μX) and (Y , ωY , μY) will be denoted C (μX , μY),
abbreviated to C when the context is clear. Couplings are also referred to as transport plans.

Example 2.2 (Product coupling). Let (X, ωX , μX), (Y , ωY , μY) ∈ N. The set C (μX , μY) is always
non-empty, because the product measure μ := μX ⊗ μY is always a coupling between μX and μY .

Example 2.3 (1-point coupling). Let (X, ωX , μX) ∈ N, and let Y = N1(a) be a network on a single
point {p}. Then there exists a unique coupling μ = μX ⊗ δp between μX and δp.

Example 2.4 (Diagonal coupling). Let (X, ωX , μX) ∈ N. The diagonal coupling Δ between μX and
itself is the transport plan that sends each point to itself, and is defined by writing

Δ(A × B) :=
∫

X
1A×B(x, x) dμX(x) for all A, B ∈ Borel(X).

To see that this is a coupling, let A ∈ Borel(X). Then,

Δ(A × X) =
∫

X
1A×X(x, x) dμX(x) =

∫
X

1A(x) dμX(x) = μX(A),

and similarly Δ(X × A) = μX(A). Thus Δ ∈ C (μX , μX).

Now we turn to the notion of the distortion of a coupling. Let (X, ωX , μX), (Y , ωY , μY) be two
measure networks. Next let μ ∈ C (μX , μY), and consider the probability space (X × Y)2 equipped
with the product measure μ ⊗ μ. For each p ∈ [1, ∞] the p-distortion of μ is defined as disp(μ) :=∥∥ωX − ωY

∥∥
p. For p ∈ [1, ∞), this is written as:

disp(μ) =
(∫

X×Y

∫
X×Y

|ωX(x, x′) − ωY(y, y′)|p dμ(x, y) dμ(x′, y′)
)1/p

.

For p = ∞, this becomes:

disp(μ) := ess sup|ωX − ωY |.
We end by introducing the Wasserstein distance [2, §7], which metrizes the topology of narrow

convergence that we introduce below. Let (X, dX) be a Polish space, let p ∈ [1, ∞] and let μ, ν ∈
Prob(X) be such that

∥∥dX(x0, ·)∥∥Lp(τ )
< ∞ for τ ∈ {μ, ν} and some x0 ∈ X. The pth Wasserstein

distance between μ, ν is defined to be:

Wp(μ, ν) := inf
τ∈C (μ,ν)

∥∥dX

∥∥
Lp(τ )

.

2.3 Optimality of couplings in the network setting

We now collect some results about probability spaces. Let X be a Polish space. A subset P ⊆ Prob(X)

is said to be tight if for all ε > 0, there is a compact subset Kε ⊆ X such that μX(X \ Kε) ≤ ε for all
μX ∈ P.
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8 S. CHOWDHURY AND F. MÉMOLI

A sequence (μn)n∈N ∈ Prob(X)N is said to converge narrowly to μX ∈ Prob(X) if

lim
n→∞

∫
X

f dμn =
∫

X
f dμX for all f ∈ Cb(X),

the space of continuous, bounded, real-valued functions on X. Narrow convergence is induced by a
distance [2, Remark 5.1.1], in particular by Wp when X is bounded, hence the convergent sequences
in Prob(X) completely determine a topology on Prob(X). This topology on Prob(X) is called the
narrow topology. In some references [33], narrow convergence (resp. narrow topology) is called weak
convergence (resp. weak topology).

A further consequence of having a metric on Prob(X) [2, Remark 5.1.1] is that singletons are closed.
This simple fact will be used below.

Theorem 2.1 (Prokhorov, [2] Theorem 5.1.3). Let X be a Polish space. Then P ⊆ Prob(X) is tight if
and only if it is relatively compact, i.e. its closure is compact in Prob(X).

Lemma 2.1 (Lemma 4.4, [37]). Let X, Y be two Polish spaces, and let PX ⊆ Prob(X), PY ⊆ Prob(Y) be
tight in their respective spaces. Then the set C (PX , PY) ⊆ Prob(X × Y) of couplings with marginals in
PX and PY is tight in Prob(X × Y).

Lemma 2.2 (Compactness of couplings; Lemma 1.2, [33]). Let X, Y be two Polish spaces. Let μX ∈
Prob(X), μY ∈ Prob(Y). Then C (μX , μY) is compact in Prob(X × Y).

Proof. The singletons {μX}, {μY} are closed and of course compact in Prob(X), Prob(Y). Hence by
Prokhorov’s theorem, they are tight. Now consider C (μX , μY) ⊆ Prob(X ×Y). Since this is obtained by
intersecting the preimages of the continuous projections onto the marginals μX and μY , we know that it
is closed. Furthermore, C (μX , μY) is tight by Lemma 2.1. Then by another application of Prokhorov’s
theorem, it is compact. �

The following lemma appeared for symmetric weight functions in the L2 case in [33], along with a
slightly different proof using parametrizations by the unit interval. The proof is actually simpler in the
network setting because we do not need to enforce symmetry of the approximating functions.

Lemma 2.3 (Continuity of the distortion functional). Let 1 ≤ p < ∞, and let (X, ωX , μX), (Y , ωY , μY)

∈ N. The distortion functional disp is continuous on C (μX , μY). For p = ∞, dis∞ is lower
semicontinuous.

Proof. First suppose p ∈ [1, ∞). We will construct a sequence of continuous functionals that converges
uniformly to disp. Since the uniform limit of continuous functions is continuous, this will show that disp
is continuous.

Bounded continuous functions are dense in Lp (in our setting of Polish spaces with finite measures,
see e.g. [11, §7.2]), so for each n ∈ N, we pick continuous, bounded functions ωn

X ∈ Lp(μ⊗2
X ) and

ωn
Y ∈ Lp(μ⊗2

Y ) such that∥∥ωX − ωn
X

∥∥
Lp(μX⊗μX)

≤ 1/n,
∥∥ωY − ωn

Y

∥∥
Lp(μY⊗μY )

≤ 1/n.

For each n ∈ N, define the functional disn
p : C (μX , μY) → R+ by disn

p(ν) := ∥∥ωn
X − ωn

Y

∥∥
Lp(ν⊗ν)

.

Note that
∣∣ωn

X − ωn
Y

∣∣ p ∈ Cb((X × Y)2).
We claim that disn

p is continuous. Since the narrow topology on Prob(X ×Y) is induced by a distance
[2, Remark 5.1.1], it suffices to show sequential continuity. Let ν ∈ C (μX , μY), and let (νm)m∈N be a
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 9

sequence in C (μX , μY) converging narrowly to ν. Then in fact νm ⊗ νm converges narrowly to ν ⊗ ν

[4, Theorem 2.1]. Thus we have

lim
m→∞ disn

p(νm) = lim
m→∞

(∫
(X×Y)2

∣∣ωn
X − ωn

Y

∣∣ pdνm ⊗ dνm

)1/p

=
(∫

(X×Y)2

∣∣ωn
X − ωn

Y

∣∣ pdν ⊗ dν

)1/p

= disn
p(ν).

Here the second equality follows from the definition of convergence in the narrow topology and the fact
that the integrand is bounded and continuous. This shows sequential continuity (hence continuity) of
disn

p.
Finally, we show that (disn

p)n∈N converges to disp uniformly. Let μ ∈ C (μX , μY). Then,

∣∣∣disp(μ) − disn
p(μ)

∣∣∣ =
∣∣∣∥∥ωX − ωY

∥∥
Lp(ν⊗ν)

− ∥∥ωn
X − ωn

Y

∥∥
Lp(ν⊗ν)

∣∣∣
≤ ∥∥ωX − ωn

X

∥∥
Lp(μX⊗μX)

+ ∥∥ωY − ωn
Y

∥∥
Lp(μY⊗μY )

≤ 2/n.

But μ ∈ C (μX , μY) was arbitrary. This shows that disp is the uniform limit of continuous functions,
hence is continuous. Here the first inequality followed from Minkowski’s inequality.

Now suppose p = ∞. Let μ ∈ C (μX , μY) be arbitrary. Recall that because we are working
over probability spaces, Jensen’s inequality can be used to show that for any 1 ≤ q ≤ r < ∞,
we have disq(μ) ≤ disr(μ). Moreover, we have limq→∞ disq(μ) = dis∞(μ). The supremum of a
family of continuous functions is lower semicontinuous. In our case, dis∞ = sup{disq : q ∈ [1, ∞)},
and we have shown above that all the functions in this family are continuous. Hence dis∞ is lower
semicontinuous. �
Definition 2.1 (Optimal couplings). Let (X, ωX , μX), (Y , ωY , μY) ∈ N, and let p ∈ [1, ∞]. A coupling
μ ∈ C (μX , μY) is optimal if disp(μ) = infν∈C (μX ,μY ) disp(ν).

Theorem 2.2 Let (X, ωX , μX) and (Y , ωY , μY) be two measure networks, and let p ∈ [1, ∞]. Then
there exists an optimal coupling, i.e. a minimizer for disp(·) in C (μX , μY).

Proof. The result follows from Lemmas 2.2 and 2.3, because lower semicontinuity and compactness
are sufficient to guarantee that disp achieves its infimum on C (μX , μY), for any p ∈ [1, ∞]. �

2.4 The network GW distance

For each p ∈ [1, ∞], we define:

dN,p(X, Y) := 1

2
min

μ∈C (μX ,μY )
disp(μ) for each (X, ωX , μX), (Y , ωY , μY) ∈ N.

Here we implicitly use Theorem 2.2 to write min instead of inf. As we will see below, dN,p is a legitimate
pseudometric on N. The structure of dN,p is analogous to a formulation of the GW distance between
metric measure spaces [21,33].
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10 S. CHOWDHURY AND F. MÉMOLI

Remark 2.4 (Boundedness of dN,p). Recall from Example 2.2 that for any X, Y ∈ N, C (μX , μY)

always contains the product coupling, and is thus non-empty. A consequence is that dN,p(X, Y) is
bounded for any p ∈ [1, ∞]. Indeed, by taking the product coupling μ := μX ⊗ μY we have
dN,p(X, Y) ≤ 1

2 disp(μ) < ∞.

In some simple cases, we obtain explicit formulas for computing dN,p.

Example 2.5 (Easy examples of dN,p). Let a, b ∈ R and consider the networks N1(a) and N1(b). The
unique coupling between the two networks is the product measure μ = δx ⊗ δy, where we understand
x, y to be the nodes of the two networks. Then for any p ∈ [1, ∞], we obtain:

dN,p(N1(a), N1(b)) = 1

2
disp(μ) = |ωN1(a)(x, x) − ωN1(b)(y, y)| = |a − b|.

Let (X, ωX , μX) ∈ N be any network and let N1(a) = ({y}, a) be a network with one node. Once
again, there is a unique coupling μ = μX ⊗ δy between the two networks. For any p ∈ [1, ∞), we obtain:

dN,p(X, N1(a)) = 1

2
disp(μ) = 1

2

(∫
X

∫
X

∣∣ωX(x, x′) − a
∣∣ p dμX(x) dμX(x′)

)1/p

.

For p = ∞, we have dN,p(X, N1(a)) = ess sup
(

1
2 |ωX − a|

)
.

Remark 2.5 dN,p is not necessarily a metric modulo strong isomorphism. This can be seen from Fig.
2.

The definition of dN,p is sensible in the sense that it captures the notion of a distance:

Theorem 2.3 For each p ∈ [1, ∞], dN,p is a pseudometric on N.

Proof of Theorem 2.3 Let (X, ωX , μX), (Y , ωY , μY), (Z, ωY , μY) ∈ N. It is clear that dN,p(X, Y) ≥ 0.
Taking the diagonal coupling (see Example 2.4) shows dN,p(X, X) = 0. For symmetry, notice that for
any μ ∈ C (μX , μY), we can define μ̃ := f∗μ, where f : X ×Y → Y ×X is the map (x, y) �→ (y, x). Then
disp(μ) = disp(μ̃), and this will show dN,p(X, Y) = dN,p(Y , X). Note that we are overloading notation
here: there are implicitly two disp functions, with different domains, for μ and μ̃, respectively.

Finally, we need to check the triangle inequality. Let μ12 ∈ C (μX , μY) and μ23 ∈ C (μY , μZ) be
couplings such that 2dN,p(X, Y) = disp(μ12) and 2dN,p(Y , Z) = disp(μ23) (using Theorem 2.2). By the
standard gluing lemma (Lemma 1.4 in [33], also Lemma 7.6 in [36]), we obtain a probability measure
μ ∈ Prob(X × Y × Z) with marginals μ12, μ23, and a marginal μ13 that is a coupling between μX
and μZ . This coupling is not necessarily optimal. Then we have:

2dN,p(X, Z) ≤ disp(μ13)

= ∥∥ωX − ωY + ωY − ωZ

∥∥
Lp(μ⊗μ)

≤ ∥∥ωX − ωY

∥∥
Lp(μ⊗μ)

+ ∥∥ωY − ωZ

∥∥
Lp(μ⊗μ)

= ∥∥ωX − ωY

∥∥
Lp(μ12⊗μ12)

+ ∥∥ωY − ωZ

∥∥
Lp(μ23⊗μ23)

= 2dN,p(X, Y) + 2dN,p(Y , Z).

The second inequality above follows from Minkowski’s inequality. This proves the triangle
inequality. �
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 11

Remark 2.6 This result and its proof are analogous to the related results for gauged and metric measure
spaces [21,33]. The observation here is that the metric structure on N is not inherited from its elements,
but is rather enforced by the structure of dN,p. This is in contrast, for example, to the Wasserstein distance
Wp, which inherits its metric structure from an underlying metric space.

It remains to discuss the precise pseudometric structure of dN,p. The following result is analogous
to a statement about homomorphisms in [33]; again, the proof is purely measure-theoretic and hence
applies to the asymmetric setting.

Theorem 2.4 (Pseudometric structure of dN,p). Let (X, ωX , μX), (Y , ωY , μY) ∈ N, and let p ∈ [1, ∞].
Then dN,p(X, Y) = 0 if and only if X ∼=w Y .

Proof of Theorem 2.4 Fix p ∈ [1, ∞). For the backward direction, suppose there exist (Z, μZ) and
measurable maps f : Z → X and g : Z → Y satisfying the conditions of Definition 2.3. Let μ :=
(f , g)∗μZ . Then μ ∈ C (μX , μY), and we have:

2dN,p(X, Y) ≤
(∫

(X×Y)2

∣∣ωX − ωY

∣∣ p dμ dμ

)1/p

=
(∫

Z2

∣∣ f ∗ωX − g∗ωY

∣∣ p dμZ dμZ

)1/p

= 0.

Here the first equality is by the change of variables formula. The case p = ∞ is similar.
For the forward direction, let μ ∈ C (μX , μY) be an optimal coupling with disp(μ) = 0 (Theorem

2.2). Define Z := X × Y , μZ := μ. Then the projection maps πX : Z → X and πY : Z → Y
are measurable. We also have (πX)∗μ = μX and (πY)∗μ = μY . Since disp(μ) = 0, we also have
‖(πX)∗ωX − (πY)∗ωY‖∞ = ‖ωX − ωY‖∞ = 0.

The p = ∞ case is proved analogously. This concludes the proof. �
Remark 2.7 A result analogous to Theorem 2.4 holds for networks without measure equipped with a
Gromov–Hausdorff-type network distance [7]. The ‘tripod structure’ X ← Z → Y described above is
much more difficult to obtain in the setting of [7]. This highlights an advantage of the measure-theoretic
setting of the current paper.

2.5 Additional constructions

We briefly digress to discuss some theoretical connections to the framework presented above. The first
of these is the notion of parametrization, which is used in the setting of mm-spaces to define Gromov’s
box distance [13]. The second is an explicit development of an alternative distance between networks
based on the GP distance between mm-spaces [12]. This in turn leads to interesting and novel lower
bounds on the dN,∞-distance between spheres (see §3.2.1).

2.5.1 Interval representation We now record a standard result about mm-spaces that remains valid in
the network setting. Let (X, ωX , μX) ∈ N. Because X is Polish and μX(X) = 1, the pair (X, μX) admits
a parameter, i.e. a (not necessarily unique) surjective Borel-measurable map ρ : I = [0, 1] → X such
that ρ∗L = μX [28, Lemma 4.2]. Here L denotes Lebesgue measure. By pulling back ωX , we get a
triple (I, ρ∗ωX , L ) ∈ N. Note that by construction, (X, ωX , μX) is weakly isomorphic to its parameter.

Parametrizations allow one to define a version of Gromov’s box distance [13] for networks.
Computing the box distance leads to difficult combinatorial problems and is not the focus of this paper,
but we point to it as a source of interesting theoretical problems.

In parametrized form, a network is a measurable, integrable function on the unit square. If the edge
weight function is normalized and centred to be in [0, 1], then a network corresponds to a graphon [19].

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article-abstract/doi/10.1093/im
aiai/iaz026/5627736 by Stanford M

edical C
enter user on 26 N

ovem
ber 2019



12 S. CHOWDHURY AND F. MÉMOLI

2.5.2 The network GP distance We now formulate a network distance analogous to the GP distance
between mm-spaces [12]. This will be used to prove subsequent results.

Let α ∈ [0, ∞). For any (X, ωX , μX), (Y , ωY , μY) ∈ N, we write C := C (μX , μY) and define:

d GP
N,α (X, Y) := 1

2
inf

μ∈C
inf

{
ε > 0 : μ ⊗ μ

(
{x, y, x′, y′ ∈ (X × Y)2 :

∣∣ωX(x, x′) − ωY(y, y′)
∣∣ ≥ ε}

)
≤ αε

}
.

Theorem 2.5 For each α ∈ [0, ∞), dGP
N,α is a pseudometric on N.

Proof. Let (X, ωX , μX), (Y , ωY , μY), (Z, ωZ , μZ) ∈ N. The proofs that dGP
N,α (X, Y) ≥ 0, dGP

N,α (X, X) = 0,

and that d GP
N,α (X, Y) = d GP

N,α (Y , X) are analogous to those used in Theorem 2.3. Hence we only check the

triangle inequality. Let εXY > 2d GP
N,α (X, Y), εYZ > 2d GP

N,α (Y , Z), and let μXY , μYZ be couplings such that

μ⊗2
XY

({
(x, y, x′, y′) :

∣∣ωX(x, x′) − ωY(y, y′)
∣∣ ≥ εXY

}) ≤ αεXY ,

μ⊗2
YZ

({
(y, z, y′, z′) :

∣∣ωY(y, y′) − ωZ(z, z′)
∣∣ ≥ εYZ

}) ≤ αεYZ .

For convenience, define:

A := {
((x, y, z), (x′, y′, z′)) ∈ (X × Y × Z)2 :

∣∣ωX(x, x′) − ωY(y, y′)
∣∣ ≥ εXY

}
B := {

((x, y, z), (x′, y′, z′)) ∈ (X × Y × Z)2 :
∣∣ωY(y, y′) − ωZ(z, z′)

∣∣ ≥ εYZ

}
C := {

((x, y, z), (x′, y′, z′)) ∈ (X × Y × Z)2 :
∣∣ωX(x, x′) − ωZ(z, z′)

∣∣ ≥ εXY + εYZ

}
.

Next let μ denote the probability measure with marginals μXY , μYZ , and a marginal μXZ ∈
C (μX , μZ) obtained from gluing μXY and μYZ (cf. Lemma 7.6 in [36]). We need to show:

μ⊗2
XZ

(
(πX , πZ)(C)

) ≤ α(εXY + εYZ).

To show this, it suffices to show C ⊆ A ∪ B, because then we have μ⊗2(C) ≤ μ⊗2(A) + μ⊗2(B) and
consequently

μ⊗2
XZ

(
(πX , πZ)(C)

) = μ⊗2(C) ≤ μ⊗2(A) + μ⊗2(B) = μ⊗2
XY

(
(πX , πY)(A)

) + μ⊗2
YZ

(
(πY , πZ)(B)

)
≤ α(εXY + εYZ).

Let ((x, y, z), (x′, y′, z′)) ∈ (X × Y × Z)2 \ (A ∪ B). Then we have∣∣ωX(x, x′) − ωY(y, y′)
∣∣ < εXY and

∣∣ωY(y, y′) − ωZ(z, z′)
∣∣ < εYZ .

By the triangle inequality, we then have:∣∣ωX(x, x′) − ωZ(z, z′)
∣∣ ≤ ∣∣ωX(x, x′) − ωY(y, y′)

∣∣ + ∣∣ωY(y, y′) − ωZ(z, z′)
∣∣ < εXY + εYZ .

Thus ((x, y, z), (x′, y′, z′)) ∈ (X × Y × Z)2 \ C. This shows C ⊆ A ∪ B.
The preceding work shows that 2d GP

N,α (X, Z) ≤ εXY + εYZ . Since εXY > 2d GP
N,α (X, Y) and εYZ >

2d GP
N,α (Y , Z) were arbitrary, it follows that d GP

N,α (X, Z) ≤ d GP
N,α (X, Y) + d GP

N,α (Y , Z). �
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 13

The next lemma follows by unpacking the definitions of the GP and GW distances.

Lemma 2.4 (Relation between GP and GW). Let (X, ωX , μX), (Y , ωY , μY) ∈ N. We always have:

d GP
N,0 (X, Y) = dN,∞(X, Y).

3. Invariants and lower bounds

As already remarked, finite networks can be regarded as square matrices equipped with a probability
measure on the columns (equivalently, the rows). This was the setting of [24]. Theorem 2.3 completes
the theoretical justification behind using the GW distance to compare matrices, as carried out (at least
for symmetric matrices) in [24].

We now study a variety of network invariants, which can also be thought of as network features.
Informally, a network invariant is a compressed representation of the network satisfying the following
compatibility property: if two networks are the same in the sense of dN,p, then their invariants should
also be ‘the same’. The invariants we consider are functions ι : (N, dN,p) → (I, dI), where (I, dI)

is some pseudometric space. Such invariants translate the original problem of computing GW over the
‘space of networks’ to computing dI over spaces I with more regular geometry, e.g. the real line.
Translating the problem to a simpler space is done in a controlled manner. One such form of control is
Lipschitz stability: an invariant ι is Lipschitz-stable if there exists a Lipschitz constant Lι such that

dI(ι(X), ι(Y)) ≤ Lι · dN,p(X, Y). (for all X, Y ∈ N.)

In Section 3.1, we present Lipschitz-stable invariants. In Section 3.2, we present a different notion of
control that we refer to as interleaving stability as well as associated invariants.

Remark 3.1 Asymmetry arises in a significant way in this section: for most of our network invariants,
we obtain ‘outgoing’ and ‘incoming’ versions, based on our choice of functions ωX(x, ·) or ωX(·, x). The
network interpretation can be framed in terms of hubs (nodes with high outgoing edge weights) and
authorities (nodes with high incoming edge weights) [17].

3.1 A hierarchy of lower bounds for dN,p

Following [20,21], we now produce a hierarchy of lower bounds for dN,p, namely the First Lower
Bound (FLB), Second Lower Bound (SLB) and TLB. These are obtained by linearizing the GW
objective and/or pushing forward the problem into the real line. Each of these bounds itself has an
associated pushforward into the real line, which we denote by adding a prefix R-. Because we are in
the asymmetric setting, the FLB, TLB and their R-versions decouple into ‘incoming’ and ‘outgoing’
versions. In Remark 3.4, we will show (using Theorem 3.1) that these lower bounds are in fact obtained
as Lipschitz stability conditions on certain network invariants.

The hierarchy is illustrated in the following diagram, where the arrows indicate (possibly non-
strictly) decreasing complexity.
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14 S. CHOWDHURY AND F. MÉMOLI

We now derive these relationships. Let p ∈ [1, ∞]. Start by fixing one pair of coordinates in the dN,p

integrand. Then we obtain the (outgoing) joint eccentricity function eccout
p,X,Y : X × Y → R+ defined by

eccout
p,X,Y(s, t) := inf

μ∈C (μX ,μY )

∥∥ωX(s, ·) − ωY(t, ·)∥∥Lp(μ)
, (s, t) ∈ X × Y . (JE)

Note that ωX(s, ·) and ωY(t, ·) are both measurable [11, Proposition 2.34]. Switching the arguments
above produces the incoming joint eccentricity function. Taking the norm of an individual term gives
the (outgoing) eccentricity function eccout

p,X : X → R+:

eccout
p,X(s) := ∥∥ωX(s, ·)∥∥Lp(μX)

, s ∈ X. (E)

Flipping the arguments above produces the incoming eccentricity function. The norm of the preceding
function is the pth size function sizep : N → R+:

sizep(X) :=
∥∥∥eccout

p,X

∥∥∥
Lp(μX)

= ∥∥ωX

∥∥
Lp(μX⊗μX)

. (Sz)

The size function is easily seen to be a network invariant: it compresses all the information
in a network into a single real number. Theorem 3.1 below shows that this compression occurs in
a quantitatively stable manner. Notice that sizep can be computed exactly via a formula, and this
computation is extremely cheap. Despite its simplicity, it can be very helpful as a first step in comparing
networks. From a procedural perspective, given a network comparison task, one could compute sizep
for different networks and compare these values to gain a coarse understanding of the discrepancies
between the networks.

A priori, the connections between Equations (E) and (JE) to network invariants are somewhat
unclear. We will use Theorem 3.1 to clarify these connections in Remark 3.4, but we present the
statements now for convenience. It will turn out that the invariant associated to Equation (E) is the map
that takes a network X to the distribution (eccout

p,X)∗μX over R. The metric between distributions will be
taken to be Wp, i.e. the codomain of this invariant is (Prob(R), Wp). Next, the invariant associated to
Equation (JE) will turn out to be the map that takes X to the distribution over distributions of ωX(x, ·).
Specifically, it will be the pushforward of μX under the map x �→ ωX(x, ·)∗μX . The codomain of this
invariant will be (Prob(Prob(R)), Wp), where the ground metric on Prob(R) is also taken to be Wp.

As a related construction, we note that given any (X, ωX , μX), taking a pushforward of μ⊗2
X via ωX

yields a distribution over R. This produces yet another invariant whose codomain is (Prob(R), Wp).

Remark 3.2 (Local and global invariants). Let (X, ωX , μX) ∈ N. Both the sizep and (ωX)∗(μX ⊗
μX) invariants are examples of global invariants, in the sense that they incorporate data from the
network without any reference to particular nodes in the network. In contrast, (eccout

p,X)∗μX and (x �→
ωX(x, ·)∗μX)∗μX incorporate information at the level of individual nodes within the network, and
constitute examples of local invariants.

We now state the main theorem of this section, which provides a hierarchy of lower bounds for dN,p.

Theorem 3.1 (Hierarchy of lower bounds). Let (X, ωX , μX), (Y , ωY , μY) ∈ N, and let p ∈ [1, ∞]. Let
C : X × Y → R denote a cost matrix with entries C(x, y) := Wp

(
ωX(x, ·)∗μX , ωY(y, ·)∗μY

)
. Then we
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 15

have the following statements about Lipschitz stability, for p ∈ [1, ∞]:

2dN,p(X, Y) = inf
μ∈C (μX ,μY )

disp(μ) = inf
μ∈C (μX ,μY )

∥∥ωX − ωY

∥∥
Lp(μ⊗2)

≥ inf
μ,ν∈C (μX ,μY )

∥∥ωX − ωY

∥∥
Lp(ν⊗μ)

= inf
μ∈C (μX ,μY )

∥∥∥eccout
p,X,Y

∥∥∥
Lp(μ)

(TLB)

= inf
μ∈C (μX ,μY )

‖C‖Lp(μ) (R-TLB)

≥ inf
μ∈C (μX ,μY )

∥∥∥eccout
p,X − eccout

p,Y

∥∥∥
Lp(μ)

(FLB)

= Wp

(
(eccout

p,X)∗μX , (eccout
p,Y)∗μY

)
. (R-FLB)

≥
∣∣∣sizep(X) − sizep(Y)

∣∣∣ (SzLB)

2dN,p(X, Y) ≥ inf
{∥∥ωX − ωY

∥∥
Lp(μ)

: μ ∈ C (μ⊗2
X , μ⊗2

Y )
}

(SLB)

= Wp

(
(ωX)∗μ

⊗2
X , (ωY)∗μ

⊗2
Y

)
. (R-SLB)

Moreover, analogous bounds hold for the eccin variants as well.

Remark 3.3 The inequalities in Theorem 3.1 appeared in the context of metric measure spaces as the
FLB, SLB and TLB and their pushforwards in [20). In the asymmetric context of the current paper, we
obtain outgoing/incoming versions of the (TLB) and (FLB) inequalities. The main development of the
current paper is that we have equalities (FLB)=(R-FLB), (SLB)=(R-SLB) and (TLB)=(R-TLB). The
equality (TLB)=(R-TLB) is especially important. A priori, each computation of eccout

p,X,Y(x, y) involves
an OT problem that can be solved via linear programming methods. The equality (TLB)=(R-TLB)
shows that this quantity is actually equal to the solution of an OT problem over the real line, which has
a closed form solution. Finally, we note that in the discrete case, all of the aforementioned equalities
follow from [27, Proposition 4.5]. The current theorem proves the equalities in the general setting.

Remark 3.4 (Connecting lower bounds to network invariants). The (TLB) lower bound arises by solv-
ing an OT problem with Equation (JE) as a cost matrix, and the (FLB) lower bound arises by solving an
OT problem with a difference of terms described by Equation (E) as a cost matrix. By virtue of the equal-
ities (FLB)=(R-FLB), (SLB)=(R-SLB) and (TLB)=(R-TLB), these lower bounds arise precisely as
Lipschitz stability conditions on the network invariants described prior to the statement of Theorem 3.1.

Before proving Theorem 3.1, we introduce some terminology from [16, §14A]. A subset A of a
Polish space X is analytic if it is the continuous image of a Polish space Y . Equivalently, A is analytic
if there exists a Polish space Y and a Borel subset B ⊆ X × Y such that A = πX(B), where πX is the
canonical projection. Any Borel measurable map f : X → Y , where Y is Polish, maps analytic sets to
analytic sets [16, Proposition 14.4].

Lemma 3.1 (Lemma 2.2, [34]). Let X, Y be analytic subsets of Polish spaces equipped with the relative
Borel σ -fields. Let f : X → Y be a surjective, Borel-measurable map. Then for any ν ∈ Prob(Y), there
exists μ ∈ Prob(X) such that ν = f∗μ.
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16 S. CHOWDHURY AND F. MÉMOLI

The next lemma states that pushforwards of couplings are exactly the couplings between the
pushforwards. This was shown in the special case of discrete spaces in [27, Proposition 4.5].

Lemma 3.2 Let X, Y be Polish, and let f : X → R and g : Y → R be measurable. Let T : X × Y → R
2

be the map (x, y) �→ (f (x), g(y)). Then we have:

T∗C (μX , μY) = C ( f∗μX , g∗μY). (3.1)

Consequently, we have:

Wp( f∗μX , g∗μY) = inf
μ∈C (μX ,μY )

‖ f − g‖Lp(μ). (3.2)

Proof of Lemma 3.2 Let μ ∈ C (μX , μY). It is standard [2, 7.1.6] that T∗μ ∈ C (f∗μX , g∗μY), and hence
Wp(f∗μX , g∗μY) ≤ ‖f − g‖Lp(μ) .

For the ‘⊇’ containment of Equation (3.1), let ν ∈ C (f∗μX , g∗μY). The map T = (f , g) is measurable
because f , g are measurable. Next note that X×Y is Polish and hence analytic. Because X×Y is analytic
and T : X × Y → R

2 is a measurable map between Polish spaces, the image T(X × Y) is analytic
[16, Proposition 14.4]. The map T : X × Y → T(X × Y) is surjective by construction. Then Lemma
3.1 applies to the map T : X × Y → T(X × Y) and the restriction ν|T(X×Y) ∈ Prob(T(X × Y)). Thus
we obtain σ ∈ C (μX , μY) such that T∗σ = ν|T(X×Y). Finally, note that ν is completely determined by
its restriction to T(X × Y): for any Z ∈ Borel(R2), we have ν(Z) = ν(Z ∩ T(X × Y)). Since ν|T(X×Y)

determines ν, the existence of σ such that T∗σ = ν|T(X×Y) suffices to show the ⊇ containment. The
equality Wp(f∗μX , g∗μY) = ‖f − g‖Lp(μ) follows immediately.

For Equation (3.2), note that by a change of variables we have (d
R

is just the standard distance on R):

∥∥d
R

∥∥
Lp(T∗μ)

= ‖ f − g‖Lp(μ).

Let ν ∈ C (f∗μX , g∗μY). By the preceding work, ν = T∗σ for some σ ∈ C (μX , μY). Hence we have:

Wp(f∗μX , g∗μY) = inf
ν∈C (f∗μX ,g∗μY )

∥∥d
R

∥∥
Lp(ν)

= inf
μ∈C (μX ,μY )

‖f − g‖Lp(μ).

�
Proof of Theorem 3.1 Inequality (TLB) holds because ν is allowed to vary and thus we infimize over a
larger set. Next fix (x, y) ∈ X × Y . Applying Lemma 3.7 Equation (3.2), we have

C(x, y) = Wp

(
ωX(x, ·)∗μX , ωY(y, ·)∗μY

) = inf
ν∈C (μX ,μY )

∥∥ωX(x, ·) − ωY(y, ·)∥∥Lp(ν)
= eccout

p,X,Y(x, y).

This proves (TLB)=(R-TLB). Next, for any ν ∈ C (μX , μY), we have by Minkowski’s inequality:

∥∥ωX(x, ·) − ωY(y, ·)∥∥Lp(ν)
≥

∣∣∣∥∥ωX(x, ·)∥∥Lp(ν)
− ∥∥ωY(y, ·)∥∥Lp(ν)

∣∣∣ =
∣∣∣eccout

p,X(x) − eccout
p,Y(y)

∣∣∣
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 17

This shows (TLB)≥(FLB). The equality (FLB)=(R-FLB) follows by another application of Lemma 3.7.
Next, for any μ ∈ C (μX , μY), another application of Minkowski’s inequality yields:

∥∥∥eccout
p,X − eccout

p,Y

∥∥∥
Lp(μ)

≥
∣∣∣∣∥∥∥eccout

p,X

∥∥∥
Lp(μ)

−
∥∥∥eccout

p,Y

∥∥∥
Lp(μ)

∣∣∣∣ =
∣∣∣sizep(X) − sizep(Y)

∣∣∣ .

This shows (FLB)≥(SzLB).
Finally for (SLB), let μ denote the minimizer of disp (invoking Theorem 2.2) and define σ := μ⊗μ.

Then σ ∈ C (μ⊗2
X , μ⊗2

Y ). Hence

2dN,p(X, Y) = ∥∥ωX − ωY

∥∥
Lp(μ⊗μ)

= ∥∥ωX − ωY

∥∥
Lp(σ )

≥ inf
ν∈C (μ⊗2

X ,μ⊗2
Y )

∥∥ωX − ωY

∥∥
Lp(ν)

.

This shows (SLB). The equality (SLB)=(R-SLB) follows by applying Lemma 3.7 Equation (3.2) with
f = ωX and g = ωY . �

3.2 Interleaving stable invariants

We now present a novel family of invariants that satisfies a different type of stability. Let (X, ωX , μX) ∈
N, and let p ∈ [1, ∞]. For each t ∈ R and x ∈ X, define the quantity

eccout
p,X(x, t) :=

∥∥∥ωX(x, ·)1{ωX(x,·)≤t}
∥∥∥

Lp(μX)
.

This is an overload of notation, but the meaning should be clear from the presence of the second
parameter. Note that {ωX(x, ·) ≤ t} is measurable, and so 1{ωX(x,·)≤t} is measurable. Hence the integral is
well-defined.

Remark 3.5 For a metric space (X, dX , μX), the quantity
∥∥∥1{dX(x,·)≤t}

∥∥∥p

Lp(μX)
is just the measure of the

ball of radius t centred at x.

Next, the pth sublevel size function is defined for each (X, ωX , μX) ∈ N and t ∈ R by writing

subSizep,t(X) =
∥∥∥eccout

p,X(·, t)
∥∥∥

Lp(μX)
. (subSz)

This function is a network invariant. Note that by the Fubini–Tonelli theorem, we can also write

subSizep,t(X) =
∥∥∥ωX1{ωX≤t}

∥∥∥
Lp(μX⊗μX)

. Both formulations are used below.

Example 3.1 In [21, Example 5.7], it was shown that the 1-diameter invariant (referred to as size1 in
this paper) does not discriminate between spheres of different dimensions. Specifically, it was shown
that

size1(S
n) = π

2
. (for any n ∈ N)

We now show via explicit computations that the map t �→ subSize1,t does distinguish between spheres.
For each n ∈ N, let Sn denote the n-sphere with the geodesic metric and normalized volume measure.
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18 S. CHOWDHURY AND F. MÉMOLI

Fig. 3. Left: Plots of f1 and g1 as described in §3.2.1. Right: Plots of f1, g1 and a shifted version of f1.

For each n ∈ N, let Sn denote the surface area of Sn. We have:

S1 = 2π , S2 = 4π , S3 = 2π2, S4 = 8

3
π2.

The following formula gives subSize for Sn, n ∈ N.

Proposition 3.1 Fix p ∈ [1, ∞). Let n ∈ N, n ≥ 2 and 0 ≤ t ≤ π . Then,

subSizep,t(S
n)p = Sn−1

Sn

∫ t

0
ϕp sinn−1(ϕ) dϕ.

For n = 1, we have:

subSizep,t(S
1)p = t p+1

(p + 1)π
.

By applying this result, we obtain subSize1,t(S
1) = t2

2π
and subSize1,t(S

2) = sin(t)−t cos(t)
2 , where

0 ≤ t ≤ π . Plots of these functions are provided in Fig. 3. Note that by having access to the functions,
instead of just the function values at t = π (which corresponds to the prior size1 result of [21, Example
5.7]), we are able to distinguish between spheres of different dimensions.

An interesting consequence of the preceding result, along with the result that size1(S
n) = π

2 for all
n ∈ N, is the following identity for n ≥ 2:

Sn−1

Sn

∫ π

0
ϕ sinn−1(ϕ) dϕ = π

2
. (3.3)

In particular, this identity and the formula in Proposition 3.1 explain why the 1-diameter (i.e. size1)
cannot distinguish between spheres, and why subSize1,t is able to do so.

Proof of Proposition 3.1 Let n = 1. We obtain the formula as a line integral. Let r(θ) = (cos θ , sin θ)

be a parametrization of the circle, where θ ∈ [0, 2π). Using symmetry, we have the following for
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 19

0 ≤ t ≤ π :

subSizep,t(S
1)p = 2

S1

∫ t

0
θp‖r′(θ)‖ dθ = 2

S1

θp+1

p + 1

∣∣∣∣t

0
= tp+1

(p + 1)π
.

Next let n ≥ 2. In hyperspherical coordinates, the area element of Sn is given by

sinn−1(ϕ1) sinn−2(ϕ2) · · · sin(ϕn−1) dϕ1dϕ2 · · · dϕn,

where the limits of integration are [0, π ] for ϕ1, . . . , ϕn−1, and [0, 2π ] for ϕn. As an example, we have:

subSizep,t(S
2)p = 1

S2

∫ 2π

0

∫ t

0
ϕ

p
1 sin ϕ1 dϕ1dϕ2.

Generalizing to larger values of n, we have:

subSizep,t(S
n)p = 1

Sn

∫ 2π

ϕn=0

∫ π

ϕn−1=0
· · ·

∫ t

ϕ1=0
ϕ

p
1 sinn−1(ϕ1) sinn−2(ϕ2) · · · sin(ϕn−1) dϕ1dϕ2 · · · dϕn

= Sn−1

Sn

∫ t

ϕ1=0
ϕ

p
1 sinn−1(ϕ1) dϕ1.

�
Having motivated subSize by at least a theoretical application, we now proceed to its stability.

Theorem 3.2 (Interleaving stability of subSize). Let p ∈ [1, ∞], t ∈ R and let (X, ωX , μX),
(Y , ωY , μY) ∈ N. Define ε := dGP

N,0 (X, Y). Then we have the following interleaving stability:

subSizep,t(X) ≤ ε + subSizep,t+ε(Y),

subSizep,t(Y) ≤ ε + subSizep,t+ε(X).

Proof. We show the first statement. Invoking Lemma 2.4, we write ε = dN, ∞(X, Y). Using Theorem
2.2, let μ ∈ C (μX , μY) be an optimal coupling for which dN, ∞(X, Y) = ε is achieved. Let B :=
{(x, y, x′, y′) ∈ (X × Y)2 :

∣∣ωX(x, x′) − ωY(y, y′)
∣∣ ≥ ε}. Let G denote the complement of B, i.e. G :={

(x, y, x′, y′) ∈ (X ×Y)2 :
∣∣ωX(x, x′) − ωY(y, y′)

∣∣ < ε
}
. By the definition of ε, we have μ⊗2(B) = 0, and

hence μ⊗2(G) = 1. Also define H := G ∩ ({ωX ≤ t} × Y2
)
. Then we have:

subSizep,t(X) =
∥∥∥eccout

p,X(·, t)
∥∥∥

Lp(μX)
=

∥∥∥ωX1{ωX≤t}
∥∥∥

Lp(μ⊗2
X )

=
∥∥∥ωX1{ωX≤t}×Y2

∥∥∥
Lp(μ⊗2)

= ∥∥ωX1H

∥∥
Lp(μ⊗2)

= ∥∥(
ωX − ωY + ωY

)
1H

∥∥
Lp(μ⊗2)

≤ ∥∥(
ωX − ωY

)
1H

∥∥
Lp(μ⊗2)

+ ∥∥ωY1H

∥∥
Lp(μ⊗2)

< ε +
∥∥∥ωY1{ωY≤t+ε}

∥∥∥
Lp(μ⊗2

Y )
= ε + subSizep,t+ε(Y). (3.4)
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20 S. CHOWDHURY AND F. MÉMOLI

Here the third equality holds because μ is a coupling measure, and the fourth equality holds because
μ⊗2(G) = 1. The first inequality holds by Minkowski’s inequality. The first part of the second inequality
holds because |ωX(x, x′)−ωY(y, y)| < ε on H, and the second part holds because ωY(y, y′) ≤ ωX(x, x′)+
ε ≤ t + ε on H. Finally, note that repeating the argument with the roles of X and Y switched completes
the proof. �
Remark 3.6 While not applied in the current paper, we may also consider a superlevel size function

supSizep,t(X) :=
∥∥∥ωX1{ωX≥t}

∥∥∥
Lp(μX⊗μX)

. In the setup of Theorem 3.4, this invariant satisfies the

following interleaving stability:

supSizep,t(X) ≤ ε + supSizep,t−ε(Y)

supSizep,t(Y) ≤ ε + supSizep,t−ε(X).

To see this, note that the proof of Theorem 3.4 carries through until the step in Inequality (3.4). In
this case, for any (x, y, x′, y′) ∈ H we have ωY(y, y′) > ωX(x, x′) − ε ≥ t − ε, thus 1H reduces
to 1{ωY≥t−ε}.

3.2.1 Lower bounds for spheres Fix n, m ∈ N. We now invoke Theorem 3.4 to obtain lower bounds
on dGP

N,0 (Sn,Sm). The explicit value of dGP
N,0 (Sn, Sm) is unknown in the existing literature, even for n =

1, m = 2.
Consider the family F := {f : [0, π ] → R+ : f increasing}. For each f ∈ F and ε ∈ [0, π ], define f ε

by writing, for each t ∈ [0, π ],

f ε(t) :=
{

f (t + ε) + ε : t + ε ∈ [0, π ]

f (π) + ε : otherwise.

Next define the interleaving distance dI on F by writing, for each f , g ∈ F,

dI( f , g) := inf{ε ≥ 0 : f ≤ gε andg ≤ f ε}.

This dI is a pseudometric on F. Next, for p ∈ [1, ∞), define fp, gp : [0, π ] → R by writing:

fp(t) := subSizep,t(S
n), gp(t) := subSizep,t(S

m). (for all t ∈ [0, π ])

Define η := dGP
N,0 (Sn, Sm). Applying Theorem 3.4, we have fp ≤ gη

p and gp ≤ f η
p . Thus dGP

N,0 (Sn,Sm) ≥
dI(fp, gp). Moreover, by the triangle inequality of dI, we have

dGP
N,0 (Sn, Sm) ≥ dI(fp, gp) ≥

∣∣∣dI(fp, h) − dI(h, gp)

∣∣∣ ,

for arbitrary h ∈ F. In particular, setting h ≡ 0, we have dI(fp, h) = subSizep,π (Sn) = sizep(S
n) and

dI(gp, h) = subSizep,π (Sm) = sizep(S
m). Thus we obtain a sizep bound:

dGP
N,0 (Sn, Sm) ≥

∣∣∣sizep(S
n) − sizep(S

m)

∣∣∣ .
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THE GROMOV–WASSERSTEIN DISTANCE BETWEEN NETWORKS AND STABLE NETWORK INVARIANTS 21

This bound can be easily improved using different choices of h ∈ F.
Using the explicit formula of Proposition 3.1, we are able to computationally obtain lower bounds

on dGP
N,0 (Sn,Sm). Set p = 1, n = 1 and m = 2. Then f1(t) = t2

2π
and g1(t) = sin(t)−t cos(t)

2 . Plots of f1 and
g1 are shown in Fig. 3.

Through Matlab simulations, we find dGP
N,0 (S1,S2) = dN, ∞(S1,S2) ≥ dI(f1, g1) ≥ 0.17. To contrast

this with a previously known lower bound, we refer to [21, Remark 5.16], where the lower bound
dN,2(S

1,S2) ≥ 0.0503 was obtained. Because dN, ∞ ≥ dN,2, this previously known lower bound yields
dN, ∞(S1,S2) ≥ 0.0503. Our new lower bound of 0.17 improves this threefold.

4. Experiments

4.1 Computational aspects

Numerical experiments in [15,20] involved using an alternate optimization procedure to estimate a local
minimum of the GW objective. The methods in [24,31] used an ERGW which led to fast algorithms.
These methods remain valid in the setting of (possibly asymmetric) networks. To complement the
existing literature, in this section we present the use of the (TLB) lower bound to compute dissimilarities
between asymmetric networks. By virtue of the equality (TLB)=(R-TLB), this lower bound can be
computed by solving a single general OT problem over a cost matrix obtained by solving OT problems
over the real line. This is practical because OT problems over R have closed form solutions, with the
caveat that computing all these OT problems is still the main bottleneck in computations. In comparable
demonstrations, the ERGW of [24] is orders of magnitude faster, but a standard warning about ERGW
is that it is prone to numerical infeasibility issues (see Appendix A). For networks of several hundred
nodes, the (R-TLB) can be computed exactly at reasonable speed, i.e. in less than a minute in Matlab
on a 2.3 GHz Intel i5 CPU with 8 GB memory. Our experiments show that (R-TLB) works well in
discriminating networks.

Next we review the formula for computing OT over R (see [36, Remark 2.19]). Let networks
(X, ωX , μX), (Y , ωY , μY) and measurable functions f : X → R, g : Y → R be given. In the eccout

setting, f = ωX(x, ·)∗μX and g = ωY(y, ·)∗μY . Then let F, G : R → [0, 1] denote the cumulative
distribution functions of f and g:

F(t) := μX({x ∈ X : f (x) ≤ t}), G(t) := μY({y ∈ Y : g(y) ≤ t}).

The generalized inverses F−1 : [0, 1] → R, G−1 : [0, 1] → R are given as:

F−1(t) := inf{u ∈ R : F(u) ≥ t}, G−1(t) := inf{u ∈ R : G(u) ≥ t}.
Then for p ≥ 1, one has:

inf
μ∈C (f∗μX ,g∗μY )

∫
R×R

|a − b|p dμ(a, b) =
∫ 1

0
|F−1(t) − G−1(t)|p dt. (4.1)

For p = 1, one obtains a reformulation that incurs lower computational cost, at least in a naive
implementation:

inf
μ∈C (f∗μX ,g∗μY )

∫
R×R

|a − b| dμ(a, b) =
∫
R

|F(t) − G(t)| dt. (4.2)
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22 S. CHOWDHURY AND F. MÉMOLI

Fig. 4. A cycle network on six nodes corresponding to the weight matrix obtained by right-shifting the vector [0, 1, 2, 3, 4, 5]T .
Note that the weights are highly asymmetric.

In our experiments, we computed both the eccout and eccin versions of (R-TLB) and take their
maximum as the lower bound. All computations were done for p = 2. For Wasserstein distance
computations, we used the mexEMD code accompanying [24]. Our code and data are available on https://
github.com/samirchowdhury/GWnets.

In a prior version of this paper, before the equality (TLB)=(R-TLB) was proved in full generality,
we were faced with the problem of solving an ensemble of OT problems over the space X × Y . At the
time, we resorted to using entropic regularization to compute the (TLB) in a reasonable amount of time.
A priori this could also have been done by directly solving the associated linear programs, using e.g.
mexEMD. While entropic regularization is not used in the current paper, we briefly report on these prior
approaches in Appendix A.

4.2 The network stochastic block model

We now describe a generative model for random networks, based on the popular stochastic block model
for sampling random graphs [1]. The current network SBM model we describe is a composition of
Gaussian distributions. However, the construction can be adjusted easily to work with other distributions.

Fix a number of communities N ∈ N. For 1 ≤ i, j ≤ N, fix a mean μij and a variance σ 2
ij . This

collection G := {N(μij, σ
2
ij ) : 1 ≤ i, j ≤ N} of N2 independent Gaussian distributions comprises the

network SBM.
To sample a random network (X, ωX) of n nodes from this SBM, start by fixing ni ∈ N, 1 ≤ i ≤ N

such that
∑

i ni = n. For 1 ≤ i ≤ N, let Xi be a set with ni points. Define X := ∪n
i=1Xi. Next sample each

node weight as ωX(x, x′) ∼ N(μij, σ
2
ij ), where x ∈ Xi and x′ ∈ Xj. Finally, the pair (X, ωX) is equipped

with the uniform measure μX that assigns a mass of 1/n to each point.
We now describe the specifics of two experiments on clustering a collection of network SBMs.

4.3 Experiment: SBMs from cycle networks

Let N ∈ N, and let v = [v1, . . . , vN] be an N × 1 vector. Define the right-shift operator ρ by
ρ([v1, . . . , vN]) = [vN , v1, . . . , vN−1]. The cycle network GN(v) is defined to be the N-node network
whose weight matrix is given by [vT , ρ(v)T , (ρ2(v))T , . . . , (ρN−1(v))T ]. The cycle network definition
appears elsewhere in the literature, see e.g. [8]. An illustration is provided in Fig. 4.

In our first experiment on network SBMs, we started with an N × 1 vector of means v and used this
to generate GN(v). We then used GN(v) as the matrix of means. To keep the experiment simple, we fixed
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Table 1 Left: The five classes of SBM networks corresponding to the experiment in §4.3. N refers to
the number of communities, v refers to the vector that was used to compute a table of means via G5(v)
and ni is the number of nodes in each community. Right: G5(v) for v = [0, 25, 50, 75, 100]

Class # N v ni Sample cycle network of means

1 5 [0,25,50,75,100] 10 0 25 50 75 100
2 5 [0,50,100,150, 200] 10 100 0 25 50 75
3 5 [0,25,50,75,100] 20 75 100 0 25 50
4 2 [0,100] 25 50 75 100 0 25
5 5 [−100,−50,0,50,100] 10 25 50 75 100 0

Fig. 5. Left: TLB dissimilarity matrix for SBM community networks in §4.3. Classes 1 and 3 are similar, even though networks
in Class 3 have twice as many nodes as those in Class 1. Classes 2 and 5 are most dissimilar because of the large difference
in their edge weights. Class 4 has a different number of communities than the others, and is dissimilar to Classes 1 and 3
even though all their edge weights are in comparable ranges. Right: (R-TLB) dissimilarity matrix for two-community SBM
networks in §4.4.

the matrix of variances to be the N × N matrix whose entries are all 5s. We made 5 choices of v, and
sampled 10 networks for each choice. The objective was then to see how well the (R-TLB) could split
the collection of 50 networks into 5 classes corresponding to the 5 different community structures. The
different parameters used in our experiments are listed in Table 1.

Class 1 is our reference; compared to this reference, class 2 differs in its edge weights, class 3
differs in the number of nodes in each community, class 4 differs in the number of communities
and class 5 differs by having a larger proportion of negative edge weights. The (R-TLB) results in
Fig. 5 show that classes 1 and 3 are treated as being very similar, whereas the other classes are all
mutually well-separated. This is consistent, because dN is not sensitive to the size of the networks
(cf. Theorem 2.4). One interesting suggestion arising from this experiment is that the (R-TLB) can be
used for network simplification: given a family of networks which are all at low (R-TLB) distance
to each other, it may be reasonable to retain only the smallest network in the family as the ‘minimal
representative’ network.
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24 S. CHOWDHURY AND F. MÉMOLI

Table 2 Two-community SBM networks as described in §4.4

Class # N v ni

1 2 [0,0] 10
2 2 [0,5] 10
3 2 [0,10] 10
4 2 [0,15] 10
5 2 [0,20] 10

4.4 Experiment: Two-community SBMs with sliding means

Having understood the interaction of the (R-TLB) with network community structure, we next
investigated how the (R-TLB) behaves with respect to edge weights. In our second experiment, we
used a 2 × 1 means vector v, and varied v as [0, 0], [0, 5], . . . , [0, 20] (see Table 2). The SBM means
were then given by G2(v) for the various choices of v. The variances were fixed to be the all 5s
matrix. The edge weight histograms of the resulting SBM networks then looked like samples from two
Gaussian distributions, with one of the Gaussians sliding away from the other. Finally, we normalized
each network by its largest weight in absolute value, so that its normalized edge weights were in [−1, 1].

The purpose of this experiment was to test the performance of (R-TLB) on SBMs coming from a
mixture of Gaussians. Note that normalization ensures that simpler invariants such as the size invariant
would likely fail in this setting. The (R-TLB) still performs reasonably well in this setting, as illustrated
by the dissimilarity matrix in Fig. 5. The linear colour gradient is consistent with the ‘sliding means’
network structure.

4.5 Experiment: Real migration networks

For an experiment involving real-world networks, we compared global bilateral migration networks
produced by the World Bank [14,23]. The data consist of 10 networks, each having 225 nodes
corresponding to countries/administrative regions. The (i, j)th entry in each network is the number of
people living in region i who were born in region j. The 10 networks comprise such data for male and
female populations in 1960, 1970, 1980, 1990 and 2000. When extracting the data, we removed the
entries corresponding to refugee populations, the Channel Islands, the Isle of Man, Serbia, Montenegro
and Kosovo, because the data corresponding to these regions were incomplete/inconsistent across the
database. We assigned uniform mass to the nodes.

The result of applying the (R-TLB) to this dataset is illustrated in Fig. 6. To better understand the
dissimilarity matrix, we also computed its single linkage dendrogram. The dendrogram suggests that
between 1960 and 1970, both male and female populations had quite similar migration patterns. Within
these years, however, migration patterns were more closely tied to gender. This effect is also seen
between 1980 and 1990, although male migration in 1990 is more divergent. Finally, migration rates
are similar for both male and female populations in 2000, and they are different from migration patterns
in prior years.

The labels in the dissimilarity matrix are as follows: 1–5 correspond to ‘f-1960’ through ‘f-2000’,
and 6–10 correspond to ‘m-1960’ through ‘m-2000’. The colour gradient in the dissimilarity matrix
suggests that within each gender, migration patterns change in a way that is parametrized by time. This
reflects the shifts in global technological and economical forces, which make migration attractive and/or
necessary with time.
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Fig. 6. Result of applying the (R-TLB) to the migration networks in §4.5. Left: Dissimilarity matrix. Nodes 1–5 correspond
to female migration from 1960–2000, and nodes 6–10 correspond to male migration from 1960–2000. Right: Single linkage
dendrogram. Notice that overall migration patterns change in time, but within a time period, migration patterns are grouped
according to gender.

5. Discussion

We have presented the GW distance as a valid pseudometric on the space of all directed, weighted
networks. The crux of this approach is that even though the GW distance was originally formulated
for metric measure spaces, the structure of the GW distance automatically forces a metric structure
on networks. This yields the insight that the metric structure on the ‘space of spaces’ is not inherited
from the metric on the ground spaces. In particular, while there are several metrics on networks that are
combinatorial in nature, and hence hard to compute/sensitive to outliers, this GW metric is considerably
more relaxed. The OT-based network invariants that we have presented yield lower bounds on the GW
distance, which at most involve linear programming, and hence are readily computable. Finally, we
tested our methods on a range of network datasets. The SBM network model that we defined for these
tests will likely yield useful benchmarks for such network methods in future applications.
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A. Computation via entropic regularization

Entropic regularization (ER), as used in [9] and further developed in [3,24,31,35], can be used in an
iterative algorithm that approximates a local minimum of the GW objective [24,31]. In this section, we
describe some heuristics that we found useful when applying ER-based techniques on network data.
The main issue that we deal with is the following: initializing an ER-objective for networks having very
different edge weights may create cost matrices with values below machine precision, which causes
computations to blow up. A related issue that we found was the problem of ‘entropic bias’, which can
be dealt with using well-understood techniques [10].

We first explain the notion of ER and associated difficulties with numerical stability. Throughout this
section, we write M to denote a cost matrix depending on the edge weights of networks (X, ωX , μX),
(Y , ωY , μY). This M could be the GW objective, as in [24], or one of the lower bound matrices from
Theorem 3.1.

A.1 Numerical stability of ER

Let (X, ωX , μX), (Y , ωY , μY) be networks with |X| = m, |Y| = n. For a general m×n cost matrix M, one
may consider the entropically regularized OT problem below, where λ ≥ 0 is a regularization parameter
and H denotes entropy:

inf
p∈C (μX ,μY )

∑
i,j

Mijpij − 1

λ
H(p), H(m) = −

∑
i,j

pij log pij.

As shown in [9], the solution to this problem has the form diag(a)∗K ∗diag(b), where K := e−λM is
a kernel matrix and a, b are non-negative scaling vectors in R

m,Rn, respectively. Here ∗ denotes matrix
multiplication, and exponentiation is performed elementwise. An approximation to this solution can be
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obtained by iteratively scaling K to have row and column sums equal to μX and μY , respectively, and
iterating until convergence. This is described in Algorithm 1.

Algorithm 1 Sinkhorn algorithm [9]

procedure sinkhorn(M, λ, mA, mB) �M an m × n cost matrix, mA, mB prob. measures

a ← 1m, b ← 1n � scaling updates, initialize as all-ones vectors

Kij ← exp(−λMij) � initialize kernel

repeat

b ← mB./(K′a), a ← mA./(Kb)

until convergence

returndiag(a)K diag(b)

end procedure

As pointed out in [5,6,26], using a large value of λ (corresponding to a small regularization) leads
to numerical instability, where values of K can go below machine precision and entries of the scaling
updates a, b can also blow up. For example, Matlab will interpret e−1000 as 0, which is a problem with
even a moderate choice of λ = 200 and Mij = 50. Theoretically, it is necessary to have K be a positive
matrix for the Sinkhorn algorithm to converge to the correct output [29,30]. Practitioners use a range
of techniques to deal with the numerical instability, e.g. occasionally ‘absorbing’ extreme values of a, b
into the kernel K (log-domain absorption), or gradually updating λ after starting with a conservative
value (see [5] for more details).

Specifically in the network setting, initializing the kernel matrix K can be tricky due to the wide
range of edge weights in the dataset: both within a network and between different networks. For
example, in the migration network database, the migration into a large country like the USA is separated
by several orders of magnitude from that of a smaller country, such as Austria. Furthermore, migration
values differ significantly between years, e.g. between 1960 and 2000.

As discussed in [5], many entries of the stabilized kernel obtained as above could be below machine
precision, but the entries corresponding to those on which the optimal plan is supported are likely to
be above the machine limit. Indeed, this sparsity may even be leveraged for additional computational
tricks.

The techniques for stabilizing the entropy regularized OT problem are not the focus of our work,
but because these considerations naturally arose in our computational experiments, we describe some
strategies we undertook that are complementary to the techniques available in the current literature. In
order to provide a perspective complementary to that presented in [5], we impose the requirement that
all entries of the kernel matrix remain above machine precision.
Initializing in the log domain. A simple adaptation of the ‘log domain absorption’ step referred to
above yields a ‘log initialization’ method that works well in most cases for initializing K to have values
above machine precision. To explain this method, we first present an algorithm (Algorithm 2) for the
log domain absorption method. We follow the presentation provided in [5], making notational changes
as necessary.

Notice that in Algorithm 2, K might already have values below machine precision at initialization.
To circumvent this, we can add a preprocessing step that yields a stable initialization of K. This is
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Algorithm 2 Sinkhorn with partial log domain steps

procedure sinkhornLog(M, λ, mA, mB) �M an m × n cost matrix, mA, mB prob. measures

a ← 1m, b ← 1n � scaling updates

u ← 0m, v ← 0n � log domain storage of large a, b

Kij ← exp(λ(−Mij + ui + vj)) � initialize kernel

while stopping criterion not met do

b ← mB./(K′a)

a ← mA./(Kb)

if max(max(a), max(b)) > threshold then

u ← u + (1/λ) log(a) � store a, b in u, v

v ← v + (1/λ) log(b)

Kij ← exp(λ(−Mij + ui + vj)) � absorb a, b into K

a ← 1m, b ← 1n � after absorption, reset a, b

end if

end while

returndiag(a)K diag(b)

end procedure

outlined in Algorithm 3. An important point to note about Algorithm 3 is that the user needs to choose
a function decideParam(α, β), which returns a ‘translation factor’ γ , where α and β are as stated
in the algorithm. This number γ should be such that exp(−λβ + 2λγ ) is above machine precision,
but exp(−λα + 2λγ ) is not too large. The crux of Algorithm 3 is that by choosing large initial scaling
vectors a, b and immediately absorbing them into the log domain, the extreme values of M are cancelled
out before exponentiation.
A geometric interpretation in the p = 2 case. The preceding initialization method has its limitations:
depending on how far min(M), max(M) are spread apart, the log initialization step might not be able to
yield an initial kernel K that has all entries above machine precision and below the machine limit. In
such a case, one recourse is to choose a different value of λ. Thus when given a database of networks
X1, . . . , Xn and cost matrices arising from comparing these networks, one may need to choose λij = λji
for each pair {Xi, Xj}. It turns out that these potentially different λ values can be related to a global λ∗
value by rescaling the networks in a geometric manner, using observations from [33]. This is described
below. In what follows, we always have p = 2.

A.1.1 Sturm’s cosine rule construction Let (X, ωX , μX), (Y , ωY , μY) ∈ N . Recall from
Example 2.11 that dN ,2(X, N1(0)) = 1

2 size2(X). Define s := 1
2 size2(X, ωX , μX), t := 1

2 size2(Y , ωY , μY).
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Algorithm 3 Log domain initialization of K

procedure logInitialize(M, λ) �M an m × n cost matrix

α ← min(M), β ← max(M) � scan M for max and min values

γ ← decideParam(α, β) �decideParam is an independent function

a ← exp(−λγ )1m, b ← exp(−λγ )1n

u ← 0m, v ← 0n

Kij ← exp(λ(−Mij + γ + γ )) �K is stably initialized

perform rest of sinkhornLog as usual

end procedure

For an optimal coupling μ ∈ C (μX , μY), we have:

dN ,2(X, Y)2 = 1

4

∫ ∫
ωX(x, x′)2 + ωY(y, y′)2 − 2ωX(x, x′)ωY(y, y′) dμ(x, y) dμ(x′, y′)

= s2 + t2 − 1

2

∫ ∫
ωX(x, x′)ωY(y, y′) dμ(x, y) dμ(x′, y′), (A1)

where the first equality holds because |a − b|2 = 〈a − b, a − b〉 = |a|2 + |b|2 − 2ab for all a, b ∈ R, and
the last equality holds because ωX(x, x′), ωY(y, y′) do not depend on μY , μX , respectively. Sturm [33,
Lemma 4.2] observed the following ‘cosine rule’ structure. Define

ω′
X := ωX

2s
, ω′

Y := ωY

2t
. (A2)

Then size2(X, ω′
X) = 1

2s size2(X, ωX) = 1 = 1
2t size2(Y , ωY) = size2(Y , ω′

Y). A geometric fact about
this construction is that (X, ωX , μX), (Y , ωY , μY) lie on geodesic rays connecting X := (X, ω′

X , μX)

and Y := (Y , ω′
Y , μY) respectively to N1(0). Actually, once (X, ωX , μX) and (Y , ωY , μY) are chosen,

the geodesic rays are automatically defined to be given by the scalar multiples of ωX , ωY . Then we
independently define X and Y to be representatives of the weak isomorphism class of networks at dN ,2
distance 1/2 from N1(0) that lie on these geodesics. We illustrate a related situation in Fig. A7, and refer
the reader to [33] for further details. Implicitly using this geometric fact, we fix X ,Y as above and treat
(X, ωX , μX), (Y , ωY , μY) as 2s and 2t-scalings of X and Y , respectively (i.e. such that Equation A2 is
satisfied). Then we have:

4dN ,2((X, ωX , μY), (Y , ωX , μY))2 − 4s2 − 4t2

=
∫ ∫

4s2ω′
X(x, x′)2 + 4t2ω′

Y(y, y′)2 − 8stω′
X(x, x′)ω′

Y(y, y′) dμ(x, y) dμ(x′, y′) − 4s2 − 4t2

= 4s2 size2(X, ω′
X)2 + 4t2 size2(Y , ω′

Y)2 − 4s2 − 4t2 − 8st
∫ ∫

ω′
X(x, x′)ω′

Y(y, y′) dμ(x, y) dμ(x′, y′)

= −8st
∫ ∫

ω′
X(x, x′)ω′

Y(y, y′) dμ(x, y) dμ(x′, y′), (A3)
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Fig. A7. Interaction between the ER parameter and rescalings, cf. §A.1.2. Choosing a regularization parameter λXY depending
on the edge weights of X and Y is essentially the same as using a fixed parameter λ∗ with (edge-weight) rescaled versions X ,Y
of X and Y . Here X , Y live on geodesic rays connecting N1(0) to X and Y . The letters s, σ , t, τ represent dN ,2-distances.

where the last equality holds because size2(X, ω′
X) = 1 = size2(Y , ω′

Y). Since (X, ωX , μX), (Y , ωY , μY)

were 2s, 2t-scalings of X and Y for arbitrary s, t > 0, this shows in particular that the quantity

(1/2st)
(

dN ,2((X, ωX , μY), (Y , ωY , μY))2 − s2 − t2
)

(cosine rule)

depends only on the reference networks X and Y , and is independent of s and t.

A.1.2 Interpretation of λ and rescaling Suppose now that we are in a setting where λ∗ > 0,
(X, ωX , μX), (Y , ωY , μY), and a cost matrix M depending on ωX , ωY are all fixed. Suppose also that
e−λ∗M contains values below machine precision, and λXY > 0 is such that e−λXY M has all values above
machine precision. Then one may define M∗ := λXY

λ∗ M, so that e−λ∗M∗ = e−λXY M . Here M∗ is a rescaled
cost matrix, and in typical use cases, it is the cost matrix obtained from rescaled weights ω′

X , ω′
Y . For

example, if M = ωXωY (as in the integrand of Equation A1, also see [24]), then M∗ = ω′
Xω′

Y , where
ω′

X , ω′
Y are rescaled from ωX , ωY by

√
λXY/λ∗. By the observations from [33] presented above, these

rescalings are compatible with the geometry of (N , dN ,2), in the sense that the rescaled networks lie
on geodesics connecting the original networks to the basepoint N1(0). This is illustrated in Fig. A7. See
[33] for more details about the geodesic structure of gauged measure spaces; the analogous results hold
for (N , dN ,2).
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