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Abstract

While standard persistent homology has been successful in

extracting information from metric datasets, its applicabil-

ity to more general data, e.g. directed networks, is hindered

by its natural insensitivity to asymmetry. We extend a con-

struction of homology of digraphs due to Grigoryan, Lin,

Muranov and Yau to the persistent framework. The result,

which we call persistent path homology or PPH, encodes a

rich level of detail about the asymmetric structure of the

input directed network. For example, we prove that PPH

identifies a class of directed cyclic networks as directed ana-

logues of the circle. In general, PPH produces signatures

that differ from natural extensions of Rips or Čech persis-

tence to the directed setting, but we prove that PPH agrees

with Čech persistence on symmetric spaces. Additionally,

we prove that PPH agrees with Čech persistence on directed

networks satisfying a local condition that we call square-

freeness. We prove stability of PPH by utilizing a separate

theory of homotopy of digraphs that is compatible with path

homology. Finally, we study computational aspects of PPH,

and derive an algorithm showing that over field coefficients,

computing PPH requires the same worst case running time

as standard persistent homology.

1 Introduction

In recent years, the advent of sophisticated data
mining tools has led to rapid growth of network
datasets in the sciences. The recently completed Hu-
man Connectome Project (2010-2015, http://www.

humanconnectome.org/), aimed at mapping the net-
work structure of the human brain, is one example of a
large-scale network data acquisition project. The avail-
ability of such network data coincides with a time of
steady growth of the mathematical theory of persis-
tent homology, which aims to study the “shape” of data
and thus appears to be a good candidate for analysing
network structure. This connection is being developed
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rapidly [33, 34, 31, 32, 24, 23, 18, 29, 17], but this ex-
ploration is far from complete.

There are two problems that arise when studying
directed networks—complete graphs with asymmetric,
real-valued weights—via persistent homology: (1) con-
ventional persistence methods take only metric space
(i.e. symmetric) or point cloud (i.e. Euclidean) data as
input, and (2) these methods typically factor the data
through a filtration of simplicial complexes, which are
themselves undirected objects. Thus the challenge is to
develop persistent homology methods that accept asym-
metric data as input, and associate homological signa-
tures without forcing symmetry on the data at any point
in the pipeline.

This problem has received some attention in recent
literature. Some notable approaches involve computing
the homology and Euler characteristic of directed clique
complexes—see [18, 29] for theoretical and algorithmic
details. A persistent homology framework for directed
clique complexes was introduced in [35], albeit with-
out an implementation. Yet another approach, using
asymmetry-sensitive simplicial complexes called Dowker
complexes, has appeared with experimental details in
[17].

Contributions. In this paper, we address the chal-
lenge presented above by constructing the persistent
path homology (PPH) method for assigning asymmetry-
sensitive persistent homology signatures to network
data. The key property of PPH is that it factors the
input data through a filtration of directed graphs, which
maintains the asymmetry in the input data. By charac-
terizing the 1-dimensional PPH of a family of directed
cycle networks, we provide evidence that PPH can ap-
propriately detect directionality information in data.

The main theoretical foundations from which PPH
is derived can be traced back to work of Barcelo et al.,
who developed a notion of homotopy for (undirected)
graphs [4, 3]. This work has recently been extended
by Grigor’yan et al. [26] to a notion of homotopy for
directed graphs. Moreover, they proved that this notion
of homotopy is consistent with a homology theory on
digraphs called path homology that they had developed
earlier [25]. It is this notion of path homology that we
extend to obtain PPH.
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Two main challenges that we faced when attempt-
ing to establish the viability of PPH as a data analysis
tool were in proving that: (1) PPH is stable to per-
turbations in the input data, and (2) PPH can be im-
plemented via an algorithm with reasonable complex-
ity. In the persistence literature, standard methods for
proving stability invoke results that hold for simplicial
complexes. These results are not available in the PPH
setting; however, by invoking results regarding homo-
topy of digraphs obtained in [26], we were still able to
prove stability of PPH. The implementation of PPH pre-
sented an additional challenge because the chain com-
plex of vector spaces at the core of the persistence ma-
chinery does not come equipped with a natural choice
of basis. This is in contrast to the setting of simplicial
complexes, where the list of all simplices forms a natu-
ral basis for the associated chain complex. We resolve
this challenge by proving that the required basis can be
obtained by the same process of left-to-right Gaussian
elimination on the columns of boundary matrices as that
used in the general persistent homology algorithm. This
observation shows that by using the general persistent
homology algorithm, we can compute PPH without any
additional overhead for finding the basis.

Organization of the paper §3 contains the necessary
background on persistent homology, networks, and the
network distance dN . §2 contains a description of
path homology. In §4 we combine ingredients from the
preceding sections to define PPH and prove its stability.
In §5 we describe a procedure for implementing PPH in
practice.

Notation We denote the nonempty elements of the
power set of a set X by Pow(X), and use the convention
that the empty set is excluded from Pow(X). We write
Z+,R+ to denote the nonnegative integers and reals,
respectively. We will write R to denote the extended
real numbers [−∞,∞]. We fix a field K and use it
throughout the paper. The identity map on a set X
is denoted idX . Given vector spaces V, V ′, we write
V ∼= V ′ to denote isomorphism of vector spaces. Given
a finite set S, we write K[S] to denote the free vector
space over K generated by the elements of S. When
we have a sequence of maps (fi)i∈I indexed by a set I,
we will often refer to them collectively as f•, without
specifying an index. Given sets A,B, a map f : A→ B,
and subsets SA ⊆ A,SB ⊆ B, we will write f(SA) ⊆ SB
to mean that f(s) ∈ SB for each s ∈ SA.

In this paper, a digraph is a pair G = (X,E), where
X is a finite set (the vertices) and E is a subset of X×X
(the edges). We always consider digraphs without self-
loops. We also make the following remark on notation:

given x, x′ ∈ X for a digraph G = (X,E), we write
x
→
= x′ to mean either x = x′, or (x, x′) ∈ E.

2 Path homology of digraphs

Homology is the formal algebraic construction at the
center of our work. For our purposes, we define
homology in the setting of general vector spaces, and
refer the reader to [30, §1.13] for additional details.
Fix a field K. A chain complex is defined to be a
sequence of vector spaces (Ck)k∈Z over K and boundary
maps (∂k : Ck → Ck−1)k∈Z satisfying the condition
∂k−1 ◦ ∂k = 0 for each k ∈ Z. We often denote a chain
complex as C = (Ck, ∂k)k∈Z. Given a chain complex C
and any k ∈ Z+, one defines the following subspaces:

Zk(C) := ker(∂k) = {c ∈ Ck : ∂k(c) = 0} , the k-cycles,

Bk(C) := im(∂k+1) = {c ∈ Ck : c = ∂k+1(b) for some

b ∈ Ck+1}, the k-boundaries.

The quotient vector space Hk(C) := Zk(C)/Bk(C)
is called the k-th homology vector space of the chain
complex C. The dimension of Hk(C) is called the k-th
Betti number of C, denoted βk(C).

Given two chain complexes C = (Ck, ∂k)k∈Z and
C′ = (C ′k, ∂

′
k)k∈Z, a chain map ϕ : C → C′ is a

family of morphisms (ϕk : Ck → C ′k)k∈Z+ such that
∂′k ◦ϕk = ϕk−1 ◦ ∂k for each k ∈ Z+. Such a chain map
induces a family of linear maps (ϕ#)k : Hk(C)→ Hk(C′)
for each k ∈ Z+ [30].

In what follows, we summarize and condense some
concepts that appeared in [25], and attempt to preserve
the original notation wherever possible.

2.1 Elementary paths on a set Given a finite set
X and any integer p ∈ Z+, an elementary p-path over X
is a sequence [x0, . . . , xp] of p+1 elements of X. For each
p ∈ Z+, the free vector space consisting of all formal
linear combinations of elementary p-paths over X with
coefficients in K is denoted Λp = Λp(X) = Λp(X,K).
One also defines Λ−1 := K and Λ−2 := {0}. Next, for
any p ∈ Z+, one defines a linear map ∂nr

p : Λp → Λp−1

to be the linearization of the following map on the
generators of Λp:

∂nr
p ([x0, . . . , xp]) :=

p∑
i=0

(−1)i[x0, . . . , x̂i, . . . , xp],

for each elementary p-path [x0, . . . , xp] ∈ Λp.

Here x̂i denotes omission of xi from the sequence. The
maps ∂nr

• are referred to as the non-regular boundary
maps. For p = −1, one defines ∂nr

−1 : Λ−1 → Λ−2 to
be the zero map. Then ∂nr

p+1 ◦ ∂nr
p = 0 for any integer

p ≥ −1 [27, Lemma 2.2]. It follows that (Λp, ∂
nr
p )p∈Z+

is a chain complex.
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For notational convenience, we will often drop the
square brackets and commas and write paths of the
form [a, b, c] as abc. We use this convention in the next
example.

Example. [Paths on a double edge] We will soon explain
the interaction between paths on a set and the edges
on a digraph. First consider a digraph on a vertex
set Y = {a, b} as in Figure 1. Notice that there
is a legitimate “path” on this digraph of the form
aba, obtained by following the directions of the edges.
But notice that applying ∂nr

2 to the 2-path aba yields
∂nr

2 (aba) = ba − aa + ab, and aa is not a valid path on
this particular digraph (self-loops are disallowed). To
handle situations like this, one needs to consider regular
paths, which are explained in the next section.

a b

Figure 1: A two-
node digraph on
the vertex set
Y = {a, b}.

2.2 Regular paths on a set For
each p ∈ Z+, an elementary p-path
[x0, . . . , xp] is called regular if xi 6=
xi+1 for each 0 ≤ i ≤ p − 1, and
irregular otherwise. Then for each
p ∈ Z+, one defines:

Rp = Rp(X,K) := K
[
{[x0, . . . , xp]

: [x0, . . . , xp] is regular}
]

Ip = Ip(X,K) := K
[
{[x0, . . . , xp]

: [x0, . . . , xp] is irregular}
]
.

One can further verify that ∂nr
p (Ip) ⊆ Ip−1 [27,

Lemma 2.6], and so ∂nr
p is well-defined on Λp/Ip. Since

Rp ∼= Λp/Ip via a natural linear isomorphism, one
can define ∂p : Rp → Rp−1 as the pullback of ∂nr

p

via this isomorphism [27, Definition 2.7]. Then ∂p is
referred to as the regular boundary map in dimension
p, where p ∈ Z+. Now we obtain a new chain complex
(Rp, ∂p)p∈Z+

.

Example. [Regular paths on a double edge] Consider
again the digraph in Figure 1. Applying the regular
boundary map to the 2-path aba yields ∂2(aba) =
ba + ab. This example illustrates the following general
principle: Irregular paths arising from an application of
∂• are treated as zeros.

2.3 Allowed paths on digraphs We now expand
on the notion of paths on a set to discuss paths on a
digraph. We follow the intuition developed in Examples
2.1 and 2.2.

Let G = (X,E) be a digraph. For each p ∈ Z+,
one defines an elementary p-path [x0, . . . , xp] on X to
be allowed if (xi, xi+1) ∈ E for each 0 ≤ i ≤ p− 1. For
each p ∈ Z+, the free vector space on the collection of

allowed p-paths on (X,E) is denoted Ap = Ap(G) =
Ap(X,E,K), and is called the space of allowed p-paths.
One further defines A−1 := K and A−2 := {0}.

a b

cd

w x

yz

Figure 2: Two
types of square
digraphs.

2.4 ∂-invariant paths and path
homology The allowed paths do
not form a chain complex, because
the image of an allowed path under
∂ need not be allowed. This is rec-
tified as follows. Given a digraph
G = (X,E) and any p ∈ Z+, the
space of ∂-invariant p-paths on G is
defined to be the following subspace
of Ap(G):

Ωp = Ωp(G) = Ωp(X,E,K)

:= {c ∈ Ap : ∂p(c) ∈ Ap−1} .

One further defines Ω−1 := A−1
∼=

K and Ω−2 := A−2 = {0}. Now
it follows by the definitions that
im(∂p(Ωp)) ⊆ Ωp−1 for any integer
p ≥ −1. Thus we have a chain com-
plex:

. . .
∂3−→ Ω2

∂2−→ Ω1
∂1−→ Ω0

∂0−→ K ∂−1−−→ 0

For each p ∈ Z+, the p-dimensional path homology
groups of G = (X,E) are defined as:

HΞ
p (G) = HΞ

p (X,E,K) := ker(∂p)/ im(∂p+1).

Example. [Paths on squares] We illustrate the construc-
tion of Ω• for the digraphs in Figure 2.

For 0 ≤ p ≤ 2, we have the following vector spaces
of ∂-invariant paths:

Ω0(GM ) = K[{a, b, c, d}]
Ω1(GM ) = K[{ab, cb, cd, ad}]
Ω2(GM ) = {0}
Ω0(GN ) = K[{w, x, y, z}]
Ω1(GN ) = K[{wx, xy, zy, wz}]
Ω2(GN ) = K[{wxy − wzy}]

The crux of the Ω• construction lies in under-
standing Ω2(GN ). Note that even though ∂GN2 (wxy),
∂GN2 (wzy) 6∈ Ω2(GN ) (because wy 6∈ A1(GN )), we still
have:

∂GN2 (wxy−wzy) = xy−wy+wx−zy+wy−wz ∈ A1(GN ).

Elementary calculations show dim(HΞ
1 (GM )) = 1,

and dim(HΞ
1 (GN )) = 0. Thus path homology can

successfully distinguish between these two squares.
To compare this with a simplicial approach, con-

sider the directed clique complex homology studied in
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[18, 29, 35]. Given a digraph G = (X,E), the directed
clique complex is defined to be the ordered simplicial
complex [30, p. 76] given by writing:

FG := X ∪ {(x0, . . . , xp) : (xi, xj) ∈ E
for all 0 ≤ i < j ≤ p}.

Here we use parentheses to denote ordered simplices.
For the squares in Figure 2, we have:

FGM = {a, b, c, d, ab, cb, cd, ad} and

FGN = {w, x, y, z, wx, xy, wz, zy} ,

and so their simplicial homologies are equal.

Remark 2.1. (The challenge of finding a natural
basis for Ω•) The digraph GN in Example 2.4 is
a minimal example showing that it is nontrivial to
compute bases for the vector spaces Ω•. Specifically,
while it is trivial to read off bases for the allowed
paths A• from a digraph, one needs to consider linear
combinations of allowed paths in a systematic manner
to obtain bases for the ∂-invariant paths.

Contrast this with the setting of simplicial homol-
ogy: here the simplices themselves form bases for the
associated chain complex, so there is no need for an ex-
tra preprocessing step. Thus when using PPH for asym-
metric data, it is important to consider the trade-off
between greater sensitivity to asymmetry and increased
computational cost.

We derive a procedure for systematically computing
bases for Ω• in §5.

2.5 Homotopy of digraphs The constructions of
path homology are accompanied by a theory of homo-
topy developed in [26]. An illustrated example is pro-
vided in Figure 3.

Let GX = (X,EX), GY = (Y,EY ) be two digraphs.
The product digraph GX × GY = (X × Y,EX×Y ) is
defined as follows:

X × Y := {(x, y) : x ∈ X, y ∈ Y }, and

EX×Y := {((x, y), (x′, y′)) ∈ (X × Y )2 : x = x′ and

(y, y′) ∈ EY , or y = y′ and (x, x′) ∈ EX}.

Next, the line digraphs I+ and I− are defined
to be the two-point digraphs with vertices {0, 1} and
edges (0, 1) and (1, 0), respectively. Two digraph maps
f, g : GX → GY are one-step homotopic if there exists
a digraph map F : GX × I → GY , where I ∈ {I+, I−},
such that:

F |GX×{0} = f and F |GX×{1} = g.

Figure 3: Directed d-cubes that are all homotopy
equivalent.

This condition is equivalent to requiring:

f(x)
→
= g(x) for all x ∈ X, or g(x)

→
= f(x) for all x ∈ X.

Moreover, f and g are homotopic, denoted f ' g,
if there is a finite sequence of digraph maps f0 =
f, f1, . . . , fn = g : GX → GY such that fi, fi+1 are one-
step homotopic for each 0 ≤ i ≤ n−1. The digraphs GX
and GY are homotopy equivalent if there exist digraph
maps f : GX → GY and g : GY → GX such that
g ◦ f ' idGX and f ◦ g ' idGY .

An example of digraph homotopy equivalence is
illustrated in Figure 3. Informally, the homotopy
equivalence is given by “crushing” the orange arrows
according to the directions they mark. This operation
crushes the 4-tesseract to the 3-cube, to the 2-square,
to the line, and finally to the point.

The concept of homotopy yields the following theo-
rem on path homology groups:

Theorem 2.1. (Theorem 3.3, [26]) Let G,G′ be two
digraphs.

1. Let f, g : G → G′ be two homotopic digraph
maps. Then these maps induce identical maps
on homology vector spaces. More precisely, the
following maps are identical for each p ∈ Z+:

(f#)p : Hp(G)→ Hp(G
′)

(g#)p : Hp(G)→ Hp(G
′).

2. If G and G′ are homotopy equivalent, then
Hp(G) ∼= Hp(G

′) for each p ∈ Z+.
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3 Background on Persistent Homology and
Networks

A persistent vector space is defined to be a family of

vector spaces and linear maps {Uδ
µδ,δ′−−−→ U δ

′}δ≤δ′∈R
such that: (1) µδ,δ is the identity for each δ ∈ R, and
(2) µδ,δ′′ = µδ′,δ′′ ◦ µδ,δ′ for each δ ≤ δ′ ≤ δ′′ ∈ R.
Persistent homology refers to the special case when we
have a family of homology vector spaces and induced
linear maps arising from chain complexes and chain
maps.

By the classification results in [11, §5.2], it is
possible to associate a full invariant called a persistence
barcode to each persistent vector space. This barcode is
a multiset of persistence intervals, and is represented
as a set of lines over a single axis. The barcode of
a persistent vector space V is denoted Pers(V). An
equivalent representation is the persistence diagram,
which is as a multiset of points lying on or above

the diagonal in R2
, counted with multiplicity. More

specifically,

Dgm(V) :=
[
(δi, δj+1) ∈ R2

: [δi, δj+1) ∈ Pers(V)
]
,

where the multiplicity of (δi, δj+1) ∈ R2
is given by the

multiplicity of [δi, δj+1) ∈ Pers(V).
Persistence diagrams can be compared using the

bottleneck distance, which we denote by dB. Details
about this distance, as well as the other material related
to persistent homology, can be found in [13]. Numerous
other formulations of the material presented above can
be found in [22, 36, 8, 20, 19, 6, 21].

Remark 3.1. From the definition of bottleneck dis-
tance, it follows that points in a persistence diagram
Dgm(V) that belong to the diagonal do not contribute
to the bottleneck distance between Dgm(V) and another
diagram Dgm(U). Thus whenever we describe a persis-
tence diagram as being trivial, we mean that either it is
empty, or it does not have any off-diagonal points.

3.1 Interleavings Let U ,V be two persistent vector
spaces with linear maps sδ,δ′ : Uδ → Uδ+ε and tδ,δ′ :
V δ → V δ+ε, respectively, for each δ ≤ δ′ ∈ R. Given
ε ≥ 0, U and V are said to be ε-interleaved [12, 6] if
there exist two families of linear maps {ϕδ : V δ →
U δ+ε}δ∈R and {ψδ : Uδ → V δ+ε}δ∈R such that: (1)
ϕδ′ ◦ sδ,δ′ = tδ+ε,δ′+ε ◦ϕδ, (2) ψδ′ ◦ tδ,δ′ = sδ+ε,δ′+ε ◦ψδ,
(3) sδ,δ+2ε = ψδ+ε ◦ ϕδ, and (4) tδ,δ+2ε = ϕδ+ε ◦ ψδ for
each δ ≤ δ′ ∈ R. The Algebraic Stability Theorem of
[12] guarantees that if U and V are ε-interleaved, then
dB(Dgm(U),Dgm(V)) ≤ ε. Details on these results are
provided in Appendix B.

3.2 Networks We follow the framework of [9, 10]. A
network is a finite set X together with a weight function
AX : X × X → R. This can be interpreted as a
complete graph with asymmetric, real-valued weights,
or alternatively, as a generalization of a finite metric
space. Note that AX is not required to satisfy the
triangle inequality or any symmetry condition. The
collection of all such networks is denoted N .

Given two networks (X,AX), (Y,AY ) ∈ N and
R ⊆ X × Y any nonempty relation, the distortion of
R is defined as:

dis(R) := max
(x,y),(x′,y′)∈R

|AX(x, x′)−AY (y, y′)|.

A correspondence between X and Y is a relation R
between X and Y such that πX(R) = X and πY (R) =
Y , where πX : X × Y → X and πY : X × Y → Y
denote the natural projections. The collection of all
correspondences between X and Y will be denoted
R(X,Y ).

Following prior work in [10], the network distance
dN : N ×N → R+ is then defined as:

dN (X,Y ) := 1
2 min
R∈R(X,Y )

dis(R).

It can be verified that dN as defined above is a
pseudometric, and that the networks at 0-distance can
be completely characterized [15, 16]. Next we wish to
state a reformulation of dN that will aid our proofs.
First we define the distortion of a map between two
networks. Given any (X,AX), (Y,AY ) ∈ N and a map
ϕ : (X,AX) → (Y,AY ), the distortion of ϕ is defined
as:

dis(ϕ) := max
x,x′∈X

|AX(x, x′)−AY (ϕ(x), ϕ(x′))|.

Given maps ϕ : (X,ωX) → (Y, ωY ) and ψ : (Y, ωY ) →
(X,ωX), we define two co-distortion terms:

CX,Y (ϕ,ψ) := max
(x,y)∈X×Y

|ωX(x, ψ(y))− ωY (ϕ(x), y)|,

CY,X(ψ,ϕ) := max
(y,x)∈Y×X

|ωY (y, ϕ(x))− ωX(ψ(y), x)|.

Proposition 3.1. ([17, Proposition 4]) Let
(X,AX), (Y,AY ) ∈ N . Then,

dN (X,Y ) = 1
2 min

{
max

(
dis(ϕ),dis(ψ), CX,Y (ϕ,ψ),

CY,X(ψ,ϕ))
)

: ϕ : X → Y, ψ : Y → X any maps
}
.

Remark 3.2. Proposition 3.1 is analogous to a result
of Kalton and Ostrovskii [28, Theorem 2.1] where—
instead of dN—one has the Gromov-Hausdorff dis-
tance between metric spaces. We remark that when
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restricted to the special case of networks that are also
metric spaces, the network distance dN agrees with the
Gromov-Hausdorff distance. Details on the Gromov-
Hausdorff distance can be found in [7].

An important remark is that in the Kalton-
Ostrovskii formulation, there is only one co-distortion
term. When Proposition 3.1 is applied to metric spaces,
the two co-distortion terms become equal by symmetry,
and thus the Kalton-Ostrovskii formulation is recovered.
But a priori, the lack of symmetry in the network setting
requires us to consider both terms.

3.3 Rips and Dowker complexes A standard tool
in persistent homology is the Vietoris-Rips complex. For
any network (X,AX) and any δ ∈ R, this is defined
as Rδ

X := {σ ⊆ X : maxx,x′∈X AX(x, x′) ≤ δ}. In
[17], it was shown that Rips complexes are insensitive
to asymmetry in data. The Dowker sink/source com-
plexes introduced in [17] were, however, shown to be
sensitive to asymmetry in data. The sink complex is
defined as Dsi

δ,X := {σ ∈ X : AX(x, p) ≤ δ for all x ∈
σ, for some p ∈ X}, and the source complex is defined
analogously, by swapping the positions of x and p. It
was shown in [17] that both types of complexes pro-
duce the same persistence diagram. The k-dimensional
Dowker persistence diagram of (X,AX) is then denoted
DgmD

k (X). In the setting of metric spaces, the Dowker
complex coincides with the Čech complex. In such cases,
we refer to Dowker/Čech persistence interchangeably.

4 The Persistent Path Homology of a Network

Let X = (X,AX) ∈ N . For any δ ∈ R, the digraph
GδX = (X,EδX) is defined as follows:

EδX := {(x, x′) ∈ X ×X : x 6= x′, AX(x, x′) ≤ δ}.

Note that for any δ′ ≥ δ ∈ R, we have a natural
inclusion map GδX ↪→ Gδ

′

X . Thus we may associate to X
the digraph filtration {GδX ↪→ Gδ

′

X }δ≤δ′∈R.
The functoriality of the path homology construction

(Appendix A, Proposition A.2) enables us to obtain a
persistent vector space from a digraph filtration. Thus
we make the following definition:

Definition 4.1. Let G = {Gδ ↪→ Gδ
′}δ≤δ′∈R be a

digraph filtration. Then for each p ∈ Z+, we define
the p-dimensional persistent path homology of G to be
the following persistent vector space:

HΞ
p (G) := {HΞ

p (Gδ)
(ιδ,δ′ )#−−−−−→ HΞ

p (Gδ
′
)}δ≤δ′∈R.

The diagram associated to HΞ
p (G) is denoted DgmΞ

p (G).
In particular, given (X,AX) ∈ N and its digraph filtra-
tion, we write DgmΞ

p (X) to denote its path persistence
diagram in dimension p.

The first main theorem of this section, which shows
that the persistent path homology construction is stable
to perturbations of input data, and hence amenable to
data analysis, is below:

Theorem 4.1. (Stability) Let X = (X,AX),Y =
(Y,AY ) ∈ N . Let p ∈ Z+. Then,

dB(Dgmp(X ),Dgmp(Y)) ≤ 2dN (X ,Y).

The proof uses results on the interleaving distance, for
which we provide details in Appendix B.

Proof. [Proof of Theorem 4.1] Let η = 2dN (X ,Y). By
virtue of Proposition 3.1, we obtain maps ϕ : X → Y
and ψ : Y → X such that dis(ϕ) ≤ η,dis(ψ) ≤ η,
CX,Y (ϕ,ψ) ≤ η, and CY,X(ψ,ϕ) ≤ η.

Claim. For each δ ∈ R, the map ϕ induces a digraph
map ϕδ : GδX → Gδ+ηY given by x 7→ ϕ(x), and the map

ψ induces a digraph map ψδ : GδY → Gδ+ηX given by
y 7→ ψ(y).

To see the claim, let δ ∈ R, and let (x, x′) ∈ EδX .
Then AX(x, x′) ≤ δ. Because dis(ϕ) ≤ η, we have

AY (ϕ(x), ϕ(x′)) ≤ δ + η. Thus (ϕ(x), ϕ(x′)) ∈ Eδ+ηY ,
and so ϕδ is a digraph map. Similarly, ψδ is a digraph
map. Since δ ∈ R was arbitrary, the claim now follows.

Claim. Let δ ≤ δ′ ∈ R, and let sδ,δ′ , tδ+η,δ′+η denote the

digraph inclusion maps GδX ↪→ Gδ
′

X and Gδ+ηY ↪→ Gδ
′+η
Y ,

respectively. Then ϕδ′ ◦ sδ,δ′ and tδ+η,δ′+η ◦ϕδ are one-
step homotopic.

To see this claim, let x ∈ X. We wish to show
ϕδ′(sδ,δ′(x))

→
= tδ+η,δ′+η(ϕδ(x)). But notice that:

ϕδ′(sδ,δ′(x)) = ϕδ′(x) = ϕ(x),

where the second equality is by definition of ϕδ′ and
the first equality occurs because sδ,δ′ is the inclusion
map. Similarly, tδ+η,δ′+η(ϕδ(x)) = tδ+η,δ′+η(ϕ(x)) =
ϕ(x). Thus we obtain ϕδ′(sδ,δ′(x))

→
= tδ+η,δ′+η(ϕδ(x)).

Since x was arbitrary, it follows that ϕδ′ ◦ sδ,δ′ and
tδ+η,δ′+η ◦ ϕδ are one-step homotopic.

Claim. Let δ ∈ R, and let sδ,δ+2η denote the digraph

inclusion map GδX ↪→ Gδ+2η
X . Then sδ,δ+2η and ψδ+η◦ϕδ

are one-step homotopic.

To see this claim, recall that CX,Y (ϕ,ψ) ≤ η, which
means that for any x ∈ X, y ∈ Y , we have:

|AX(x, ψ(y))−AY (ϕ(x), y))| ≤ η.
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Figure 4: Left: Gδ�3
is (digraph) homotopy equivalent

to a point at δ = 1, as can be seen by collapsing
points along the orange lines. Right: Dsi

δ,�3
becomes

contractible at δ =
√

2, but has nontrivial homology in
dimension 2 that persists across the interval [1,

√
2).

Let x ∈ X, and let y = ϕ(x). Notice that sδ,δ+2η(x) = x
and ψδ+η(ϕδ(x)) = ψ(ϕ(x)). Also note:

AX(x, ψ(ϕ(x))) ≤ η +AY (ϕ(x), ϕ(x)) ≤ δ + 2η.

Thus sδ,δ+2η(x)
→
= ψδ+η(ϕδ(x)), and this holds for any

x ∈ X. The claim follows.
By combining the preceding claims and Theorem

2.1, we obtain the following, for each p ∈ Z+:

((sδ,δ+2η)#)p = ((ψδ+η ◦ ϕδ)#)p,

((ϕδ′ ◦ sδ,δ′)#)p = ((tδ+η,δ′+η ◦ ϕδ)#)p.

By invoking functoriality of path homology (Proposition
A.2), we obtain:

((sδ,δ+2η)#)p = ((ψδ+η)#)p ◦ ((ϕδ)#)p,

((ϕδ′)#)p ◦ (sδ,δ′)#)p = ((tδ+η,δ′+η)#)p ◦ ((ϕδ)#)p.

By using similar arguments, we can also obtain, for each
p ∈ Z+,

((tδ,δ+2η)#)p = ((ϕδ+η)#)p ◦ ((ψδ)#)p,

((ψδ′)#)p ◦ (tδ,δ′)#)p = ((sδ+η,δ′+η)#)p ◦ ((ψδ)#)p.

Thus HΞ
p (X ) and HΞ

p (Y) are η-interleaved, for each
p ∈ Z+. The result now follows by an application of
the Algebraic Stability Theorem (see §3.1, also Theorem
B.1).

Remark 4.1. The preceding stability result has analo-
gous counterparts in the setting of Rips and Dowker per-
sistence for asymmetric networks. The key difference in
the proof technique is that in the Rips/Dowker settings
one can use classical results about contiguous simplicial
maps, whereas in this setting, we are required to use
results on the homotopy of digraphs that were recently
developed in [26].

Having defined PPH, we now answer some funda-
mental questions related to its characterization. We
show that PPH agrees with Čech/Dowker persistence
on metric spaces in dimension 1, but not necessarily in
higher dimensions. We also show that in the asymmet-
ric case, PPH and Dowker agree in dimension 1 if a
certain local condition is satisfied.

Example. [PPH vs Dowker for metric n-cubes] In
the setting of metric spaces, PPH is generally dif-
ferent from Dowker persistence in dimensions ≥ 2.
To see this, consider Rn equipped with the Eu-
clidean distance for n ≥ 3. Define �n :=
{(i1, i2, . . . , in) : ij ∈ {0, 1} ∀ 1 ≤ j ≤ n} . Then Gδ�n
has no edges for δ < 1, and for δ = 1, it has precisely
an edge between any two points of �n that differ on
a single coordinate. But at δ = 1, Gδ�n is homotopy

equivalent to Gδ�n−1
: the homotopy equivalence is given

by collapsing points that differ exactly on the nth co-
ordinate (see Figure 4). Proceeding recursively, we see
that Gδ�n−1

is contractible at δ = 1. However, Dsi(�n)
is not contractible at δ = 1. Moreover, an explicit
verification for the n = 3 case shows that DgmD

2 (�3)
consists of the point (1,

√
2) with multiplicity 7. Thus

DgmD
2 (�3) 6= DgmΞ

2 (�3).

Theorem 4.2. Let X = (X,AX) ∈ N be a symmetric
network, and fix K = Z/pZ for some prime p. Then
DgmΞ

1 (X ) = DgmD
1 (X ).

The preceding result shows that on metric spaces,
PPH agrees with Dowker persistence in dimension 1.
The converse implication is not true: in §4.1, we provide
a family of highly asymmetric networks for which PPH
agrees with Dowker persistence in dimension 1. On the
other hand, the examples in Figure 5 show that equality
in dimension 1 does not necessarily hold for asymmetric
networks. Moreover, it turns out that the four-point
configurations illustrated in Figure 5 can be used to
give another partial characterization of the networks
for which PPH and Dowker persistence do agree in
dimension 1. We present this statement next.

Definition 4.2. Squares, triangles, and double
edges. Let G be a finite digraph. Then we define the
following local configurations of edges between distinct
nodes a, b, c, d:

• A double edge is a pair of edges (a, b), (b, a).

• A triangle is a set of edges (a, b), (b, c), (a, c).

• A short square is a set of edges (a, b), (a, d), (c, b),
(c, d) such that neither of (a, c), (c, a), (b, d), (d, b)
is an edge.
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x1

x2

x3
x4

X

y1

y2

y3
y4

Y

x1 x2 x3 x4

x1

x2

x3

x4

0 1 2 2

2 0 2 2

2 1 0 2

1 2 1 0

y1 y2 y3 y4

y1

y2

y3

y4

0 1 2 1

2 0 2 2

2 1 0 1

2 2 2 0

Figure 5: Working over Z/2Z coefficients, we find
that DgmΞ

1 (X ) and DgmD
1 (Y) are trivial, whereas

DgmD
1 (X ) = DgmΞ

1 (Y) = {(1, 2)} = {(1, 2)}.

• A long square is a set of edges (a, b), (b, c), (a, d),
(d, c) such that (a, c) is not an edge.

All these are illustrated in Figure 6. Finally, we
define a network (X,AX) to be square-free if GδX does
not contain a four-point subset whose induced subgraph
is a short or long square, for any δ ∈ R. An important
observation is that to be a square, the subgraph induced
by a four-point subset cannot just include one of the
configurations pictured above; it must exclude diagonal
edges as well.

Theorem 4.3. Let X = (X,AX) ∈ N be a square-free
network, and fix K = Z/pZ for some prime p. Then
DgmΞ

1 (X ) = DgmD
1 (X ).

Remark 4.2. The proofs of Theorems 4.2 and 4.3 both
require an argument where simplices are paired up—
this requires us to use Z/pZ coefficients in both theorem
statements.

4.1 An application: Characterizing the dia-
grams of cycle networks For each n ∈ N, con-
sider the weighted, directed graph (Xn, En,WEn)
with vertex set Xn := {x1, x2, . . . , xn}, edge set
En := {(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1)}, and
edge weights WEn : En → R given by writing WEn(e) =
1 for each e ∈ En. Next let AGn : Xn × Xn → R de-
note the shortest path distance induced on Xn × Xn

by WEn . Define the cycle network on n nodes to be
Gn := (Xn, AGn). A cycle network on 6 nodes is il-
lustrated in Figure 7, along with its weight matrix. If

a b a b

c

a b

cd

a b

cd

Figure 6: Squares, triangles, and double edges

x1 x2

x3

x4x5

x6

1

1

1

1

1

1

x1 x2 x3 x4 x5 x6

x1

x2

x3

x4

x5

x6

0 1 2 3 4 5

5 0 1 2 3 4

4 5 0 1 2 3

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

Figure 7: A cycle network on 6 nodes, along with
its weight matrix. Note that the weights are highly
asymmetric.

x1, x2, . . . , xk ∈ Xn appear in Gn in this clockwise or-
der, we will write x1 � x2 � . . . � xk.

Notice that cycle networks are square-free. If a ≺
b ≺ c ≺ d are four nodes on a cycle network, then
for any δ ∈ R such that we have an edge a → d, we
automatically have an edge a → c. Thus the subgraph
induced by {a, b, c, d} cannot be either a long or a short
square.

Cycle networks constitute an interesting family
of examples with surprising connections to existing
literature [2, 1]. In particular, their Dowker persistence
diagrams can be fully characterized by results in [2],
[1], and [17]. More specifically, given any n ≥ 3, we
know that DgmD

1 (Gn) consists of the point (1, dn/2e)
with multiplicity 1. In this sense, a cycle network is a
directed analogue of the circle.

A natural test to see if PPH detects cyclic behavior
in an expected way is to see if it can be characterized
for cycle networks. This is the content of the following
theorem.
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Theorem 4.4. Let Gn be a cycle network for some
integer n ≥ 3. Fix a field K = Z/pZ for some prime p.
Then DgmΞ

1 (Gn) = {(1, dn/2e)}.

5 Algorithmic Details

The origin of a general persistent homology algorithm
for simplicial complexes can be traced back to [22] for
Z/2Z coefficients, and to [36] for arbitrary field coeffi-
cients. Here it was observed that the persistence algo-
rithm has the same running time as Gaussian elimina-
tion over fields, i.e. O(m3) in the worst case, where m
is the number of simplices.

The PPH setting is more complicated, due to two
reasons: (1) because of directionality, the number of p-
paths on a vertex set is much larger than the number
of p-simplices, for any p ∈ N, and (2) one must first
obtain bases for the ∂-invariant p-paths {Ωp : p ≥ 2}.
The first item is unavoidable, and even desirable—we
capture the asymmetry in the data, thus retaining more
information. For the second item, note that Ω0 and
Ω1 are just the allowed 0 and 1-paths, so their bases
can just be read off from the network weight function.
After obtaining compatible bases for the filtered chain
complex

{
Ωi• → Ωi+1

•
}
i∈N, however, one can use the

general persistent homology algorithm [22, 36, 14]. By
compatible bases, we mean a set of bases {Bip ⊆ Ωip :

0 ≤ p ≤ D + 1, i ∈ N} such that Bip ⊆ Bi+1
p for each i,

and relative to which the transformation matrices Mp

of ∂p are known. Here D is the dimension up to which
we compute persistence.

We now present a procedure for obtaining com-
patible bases for the ∂-invariant paths. Fix a net-
work (X,AX). We write Rp to denote Rp(X,K), for
each p ∈ Z+. Given a digraph filtration on X, we
obtain a filtered vector space {Ai• → Ai+1

• }Ni=1 and
a filtered chain complex {Ωi• → Ωi+1

• }Ni=1 for some
N ∈ N. For any p-path v, define its allow time as
at(v) := min{k ≥ 0 : v ∈ Akp}. Similarly define its

entry time as et(v) := min{k ≥ 0 : v ∈ Ωkp}. The allow
time and entry time coincide when p = 0, 1, but are not
necessarily equal in general. In Figure 5, for example,
we have at(x4x1x2) = 1 < 2 = et(x4x1x2).

Now fix p ≥ 2, and consider the map ∂p : Rp →
Rp−1. Let Mp denote the matrix representation of ∂p,
relative to an arbitrary choice of bases Bp and Bp−1 for
Rp and Rp−1. For convenience, we write the bases as

Bp ={vpi : 1 ≤ i ≤ dim(Rp)} and Bp−1 ={vp−1
i : 1 ≤

i ≤ dim(Rp−1)}, respectively. Each basis element has
an allow time that can be computed efficiently, and the
allow times belong the set {1, 2, . . . , N}. By performing
row and column swaps as needed, we can arrange Mp so
that the basis vectors for the domain are in increasing

allow time, and the basis vectors for the codomain are
in decreasing allow time. This is illustrated in Figure 8.

A special feature of Mp is that it is stratified
into horizontal strips given by the allow times of the
codomain basis vectors. For each 1 ≤ i ≤ N , we define
the height range i as:

hr(i) := {1 ≤ j ≤ dim(Rp−1) : at(vp−1
j ) = i}.

In words, hr(i) lists the codomain basis vectors
that have allow time i. Next we transform Mp into a
column echelon form Mp,G, using left-to-right Gaussian
elimination. In this form, all nonzero columns are to
the left of any zero column, and the leading coefficient
(the topmost nonzero element) of any column is strictly
above the leading coefficient of the column on its right.
The leading coefficients are usually called pivots. An
illustration of Mp,G is provided in Figure 8. To obtain
this column echelon form, the following elementary
column operations are used:

1. swap columns i and j,

2. replace column j by (col j−k(col i)), where k ∈ K.

The basis for the domain undergoes corresponding
changes, i.e. we replace vpj by (vpj − kv

p
i ) as necessary.

We write the new basis Bp,G for Rp as {v̂pi : 1 ≤
i ≤ dim(Rp)}. Moreover, we can write this basis as
a union Bp,G = ∪Ni=1B

i
p,G, where each Bip,G := {v̂pk :

1 ≤ k ≤ dim(Rp), et(v̂pk) ≤ i}. This follows easily
from the column echelon form: for each basis vector
v of the domain, the corresponding column vector is
∂p(v), and at(∂p(v)) can be read directly from the height
of the column. Specifically, if the row index of the
topmost nonzero entry of ∂p(v) belongs to hr(i), then
at(∂p(v)) = i, and if ∂p(v) = 0, then at(∂p(v)) = 0.
Then we have et(v) = max(at(v), at(∂p(v))).

Remark 5.1. In the Gaussian elimination step above,
we only eliminate entries by adding paths that have
already been allowed in the filtration. This means that
for any operation of the form vpj ← vpj − kv

p
i , we must

have at(vpi ) ≤ at(vpj ). Thus at(vpj − kv
p
i ) = at(vpj ). It

follows that the allow times of the domain basis vectors
do not change as we pass from Mp to Mp,G, i.e. Mp

and Mp,G have the same number of domain basis vectors
corresponding to any particular allow time.

Now we repeat the same procedure for ∂p+1 :
Rp+1 → Rp, taking care to use the basis Bp,G for
Rp. Because we never perform any row operations
on Mp+1, the computations for Mp+1 do not affect
Mp,G. We claim that for each 1 ≤ i ≤ N and each
p ≥ 0, Bip,G is a basis for Ωip. The correctness of the
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procedure amounts to proving this claim. Assuming
the claim for now, we obtain compatible bases for the

chain complex
{

Ωi• → Ωi+1
•
}N
i=1

. Applying the general
persistence algorithm with respect to the bases we just
found now yields the PPH diagram.

Correctness Note that all paths become allowed even-
tually, so dim(ΩNp ) = dim(Rp). We claim that Bip,G is

a basis for Ωip, for each 1 ≤ i ≤ N . To see this, fix

1 ≤ i ≤ N and let v ∈ Bip,G. By the definition of Bip,G,

et(v) ≤ i, so v ∈ Ωip. Each Bip,G was obtained by per-
forming linear operations on the basis Bp of Rp, so it is
a linearly independent collection of vectors in Ωip. To-

wards a contradiction, suppose Bip,G does not span Ωip.

Let ũ ∈ Ωip be linearly independent from Bip,G, and let

ṽ ∈ Bp,G \ Bip,G be linearly dependent on ũ (such a ṽ
exists because Bp,G is a basis for Rp).

Consider the basis Bũp obtained from Bp,G after

replacing ṽ with ũ. Let M ũ
p denote the corresponding

matrix, with the columns arranged in the following
order from left to right: the first |Bip,G| columns agree
with those of Mp,G, the next column is ∂p(ũ), and
the remaining columns appear in the same order that
they appear in Mp,G. Notice that Mp,G differs from
M ũ
p by a change of (domain) basis, i.e. a sequence of

elementary column operations. Next perform another
round of left-to-right Gaussian elimination to arrive at
a column echelon form Mu

p , where u is the domain basis
vector obtained from ũ after performing all the column
operations. Let Bup denote the corresponding domain
basis. It is a standard theorem in linear algebra that
the reduced column echelon form of a matrix is unique.
Since Mp,G and Mu

p were obtained from Mp via column
operations, they both have the same unique reduced
column echelon form, and it follows that they have the
same pivot positions.

Now we arrive at the contradiction. Since ṽ 6∈ Bip,G,
we must have either at(ṽ) > i, or at(∂p(ṽ)) > i. Suppose
first that at(ṽ) > i. Since ũ ∈ Ωip, we must have
et(ũ) ≤ i, and so at(ũ) ≤ i. By the way in which
we sorted M ũ

p , we know that u is obtained by adding

terms from Bip,G to ũ. Each term in Bip,G has allow
time ≤ i, so at(u) ≤ i by Remark 5.1. But then
Bup has one more basis vector with allow time ≤ i
than Bp, i.e. one fewer basis vector with allow time
> i. This is a contradiction, because taking linear
combinations of linearly independent vectors to arrive at
Bup can only increase the allow time. Next suppose that
at(∂p(ṽ)) > i. Then, because Mp,G is already reduced,
the column of ṽ has a pivot at a height that does not
belong to hr(i). Now consider ∂p(u). Suppose first that
∂p(u) = 0. Then the column of u clearly does not have
a pivot, and it does not affect the pivots of the columns

to its right in Mu
p . Thus Mu

p has one fewer pivot than
Mp,G, which is a contradiction because both matrices
have the same reduced column echelon form and hence
the same pivot positions. Finally, suppose ∂p(u) 6= 0.
Since u is obtained from ũ by reduction, we also have
at(∂p(u)) ≤ at(∂p(ũ)) ≤ i. Thus Mu

p has one more
pivot at height range i than Mp,G, which is again a
contradiction. Thus Bip,G spans Ωip. Since 1 ≤ i ≤ N
was arbitrary, the result follows.

Data structure Our work shows that left-to-right col-
umn reduction is sufficient to obtain compatible bases
for the filtered chain complex {Ωi• → Ωi+1

• }Ni=1. As
shown in [36], this is precisely the operation needed
in computing persistence intervals, so we can compute
PPH with little more work. It is known that there
are simple ways to optimize the left-to-right persistence
computation [14, 5], but in this paper we follow the clas-
sical treatment. Following [22, 36], our data structure
is a linear array T labeled by the elementary regular
p-paths, 0 ≤ p ≤ D + 1, where D is the dimension up
to which homology is computed. For completeness, in
Appendix D we show how to modify the algorithms in
[36] to obtain PPH.

Analysis The running time for this procedure is the
same as that of Gaussian elimination over fields, i.e. it
is O(m3), where m is the number of D-paths (if we
compute persistence up to dimension D − 1). This
number is large: the number of regular D-paths over
n points is n(n − 1)D. Computing persistence also
requires O(m3) running time. Thus, to compute PPH
in dimension D− 1 for a network on n nodes, the worst
case running time is O(n3+3D).

Compare this with the problem of producing sim-
plicial complexes from networks, and then computing
simplicial persistent homology. For a network on n
nodes, assume that the simplicial filtration is such that
every D-simplex on n points eventually enters the fil-
tration (see [17] for such filtrations). The number of
D-simplices over n points is

(
n

D+1

)
, which is of the same

order as nD+1. Thus computing simplicial persistent
homology in dimension D − 1 via such a filtration (us-
ing the general algorithm of [36]) still has complexity
O(n3+3D).

6 Discussion

We presented persistent path homology (PPH) as a
novel tool for performing topological data analysis on di-
rected networks. We proved its stability by appealing to
a homotopy theory for digraphs. We proved some fun-
damental characterization results, i.e. that PPH agrees
with Čech/Dowker persistence in metric spaces (more
generally in symmetric/undirected networks) in dimen-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1161

D
ow

nl
oa

de
d 

01
/1

6/
18

 to
 1

84
.5

7.
53

.3
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



at = 1 at = 2 · · · at = N

at = N

at = 1

.

.

.

basis for Rp

basis for Rp−1
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Figure 8: Left: The rows and columns of Mp are initially arranged so that the domain and codomain vectors
are in increasing and decreasing allow time, respectively. If there are no domain (codomain) vectors having a
particular allow time, then the corresponding vertical (horizontal) strip is omitted. Right: After converting to
column echelon form, the domain vectors of Mp,G need not be in the original ordering. But the codomain vectors
are still arranged in decreasing allow time.

sion 1 (but not necessarily in higher dimensions), and
that PPH recognizes the periodic structure of a cycle
network as a directed analogue of a circle, as it should.
For this last result, we developed a separate characteri-
zation result showing that even on asymmetric/directed
networks, PPH agrees with Dowker persistence if the
network is square-free.

From the computational standpoint, we proved that
the problem of finding a natural basis when computing
PPH is automatically solved inside the general persis-
tent homology algorithm, and thus does not cost any
additional overhead. Future work includes optimizing
the computation of PPH, perhaps in the same way that
tools from matroid theory or discrete Morse theory can
be employed for efficient computation of simplicial per-
sistent homology.
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A Digraph maps and functoriality

A digraph map between two digraphs GX = (X,EX)
and GY = (Y,EY ) is a map f : X → Y such that for
any edge (x, x′) ∈ EX , we have f(x)

→
= f(x′). Recall

that this notation means:

either f(x) = f(x′), or (f(x), f(x′)) ∈ EY .

To extend path homology constructions to a persis-
tent framework, we need to verify the functoriality of
path homology. As a first step, one must understand
how digraph maps transform into maps between vector
spaces. Some of the material below can be found in
[26]; we contribute a statement and verification of the
functoriality of path homology (Proposition A.2) that
is central to the PPH framework (Definition 4.1).

Let X,Y be two sets, and let f : X → Y be a
set map. For each dimension p ∈ Z+, one defines a
map (f∗)p : Λp(X) → Λp(Y ) to be the linearization
of the following map on generators: for any generator
[x0, . . . , xp] ∈ Λp(X),

(f∗)p([x0, . . . , xp]) := [f(x0), f(x1), . . . , f(xp)].

Note also that for any p ∈ Z+ and any generator
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[x0, . . . , xp] ∈ Λp(X), we have:(
(f∗)p−1 ◦ ∂nr

p

)
([x0, . . . , xp])

=

p∑
i=0

(−1)i(f∗)p−1

(
[x0, . . . , x̂i, . . . , xp]

)
=

p∑
i=0

(−1)i[f(x0), . . . , f̂(xi), . . . , f(xp)]

=
(
∂nr
p ◦ (f∗)p

)
([x0, . . . , xp]).

It follows that f∗ := ((f∗)p)p∈Z+
is a chain map from

(Λp(X), ∂nr
p )p∈Z+

to (Λp(Y ), ∂nr
p )p∈Z+

.
Let p ∈ Z+. Note that (f∗)p(Ip(X)) ⊆ Ip(Y ), so

(f∗)p descends to a map on quotients

(f̃∗)p : Λp(X)/Ip(X)→ Λp(Y )/Ip(Y )

which is well-defined. For convenience, we will abuse
notation to denote the map on quotients by (f∗)p as
well. Thus we obtain an induced map (f∗)p : Rp(X)→
Rp(Y ). Since p ∈ Z+ was arbitrary, we get that f∗ is
a chain map from (Rp(X), ∂p)p∈Z+

to (Rp(Y ), ∂p)p∈Z+
.

The operation of this chain map is as follows: for each
p ∈ Z+ and any generator [x0, . . . , xp] ∈ Rp(X),

(f∗)p([x0, . . . , xp]) = [f(x0), f(x1), . . . , f(xp)]

if f(x0), f(x1), . . . , f(xp) are all distinct, and is 0 oth-
erwise. We refer to f∗ as the chain map induced by the
set map f : X → Y .

Now given two digraphs GX = (X,EX), GY =
(Y,EY ) and a digraph map f : GX → GY , one may use
the underlying set map f : X → Y to induce a chain
map f∗ : R•(X) → R•(Y ). As one could hope, the
restriction of the chain map f∗ to the chain complex of
∂-invariant paths on GX maps into the chain complex
of ∂-invariant paths on GY , and moreover, is a chain
map. We state this result as a proposition below, and
provide a reference for the proof.

Proposition A.1. (Theorem 2.10, [26]) Let GX =
(X,EX), GY = (Y,EY ) be two digraphs, and let f :
GX → GY be a digraph map. Let f∗ : R•(X) →
R•(Y ) denote the chain map induced by the underly-
ing set map f : X → Y . Let (Ωp(GX), ∂GXp )p∈Z+

,

(Ωp(GY ), ∂GYp )p∈Z+
denote the chain complexes of the

∂-invariant paths associated to each of these digraphs.
Then (f∗)p(Ωp(GX)) ⊆ Ωp(GY ) for each p ∈ Z+, and
the restriction of f∗ to Ω•(GX) is a chain map.

Henceforth, given two digraphs G,G′ and a digraph
map f : G→ G′, we refer to the chain map f∗ given by
Proposition A.1 as the chain map induced by the digraph
map f . Because f∗ is a chain map, we then obtain an

induced linear map (f#)p : Hp(G) → Hp(G
′) for each

p ∈ Z+.
The preceding concepts are necessary for developing

the theory of path homology. We use this set up
to state and prove the following result, which is used
in defining PPH (Definition 4.1) and also for proving
stability (Theorem 4.1).

Proposition A.2. Functoriality of path homol-
ogy. Let G,G′, G′′ be three digraphs.

1. Let idG : G→ G be the identity digraph map. Then
(idG#)p : Hp(G) → Hp(G) is the identity linear
map for each p ∈ Z+.

2. Let f : G → G′, g : G′ → G′′ be digraph maps.
Then ((g ◦ f)#)p = (g#)p ◦ (f#)p for any p ∈ Z+.

Proof. Let p ∈ Z+. In each case, it suffices to verify the
operations on generators of Ωp(G). Let [x0, . . . , xp] ∈
Ωp(G). We will write idG∗ to denote the chain map
induced by the digraph map idG. First note that

(idG∗)p([x0, . . . , xp]) = [idG(x0), . . . , idG(xp)]

= [x0, . . . , xp].

It follows that (idG∗)p is the identity linear map on
Ωp(G), and thus (idG#)p is the identity linear map
on Hp(G). For the second claim, suppose first that
g(f(x0)), . . . , g(f(xp)) are all distinct. This implies that
f(x0), . . . , f(xp) are also all distinct, and we observe:

((g ◦ f)∗)p([x0, . . . , xp]) = [g(f(x0)), . . . , g(f(xp))]

= (g∗)p([f(x0), . . . , f(xp)])

= (g∗)p
(
(f∗)p([x0, . . . , xp])

)
.

Next suppose that for some 0 ≤ i 6= j ≤ p, we have
g(f(xi)) = g(f(xj)). Then we obtain:

((g ◦ f)∗)p([x0, . . . , xp]) = 0 = (g∗)p
(
(f∗)p([x0, . . . , xp])

)
.

It follows that ((g◦f)∗)p = (g∗)p ◦(f∗)p. The statement
of the proposition now follows.

B Interleaving distance and stability of
persistent path homology.

Given ε ≥ 0, two R-indexed persistent vector spaces

V = {V δ
νδ,δ′−−−→ V δ

′}δ≤δ′ and U = {Uδ
µδ,δ′−−−→ U δ

′}δ≤δ′
are said to be ε-interleaved [12, 6] if there exist two
families of linear maps

{ϕδ : V δ → U δ+ε}δ∈R,
{ψδ : U δ → V δ+ε}δ∈R
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such that the following equalities hold for all δ′ ≥ δ ∈ R:

ϕδ′ ◦ νδ,δ′ = µδ+ε,δ′+ε ◦ ϕδ
νδ+ε,δ′+ε ◦ ψδ = ψδ′ ◦ µδ,δ′

νδ,δ+2ε = ψδ+ε ◦ ϕδ
µδ,δ+2ε = ϕδ+ε ◦ ψδ.

The purpose of introducing ε-interleavings is to define
a pseudometric on the collection of persistent vector
spaces. The interleaving distance between two R-
indexed persistent vector spaces V,U is given by:

dI(U ,V) := inf {ε ≥ 0 : U and V are ε-interleaved} .

One can verify that this definition induces a pseudomet-
ric on the collection of persistent vector spaces [12, 6].
The interleaving distance can then be related to the
bottleneck distance as follows:

Theorem B.1. (Algebraic Stability, [12]) Let
U ,V be two R-indexed persistent vector spaces. Then,

dB(Dgm(U),Dgm(V)) ≤ dI(U ,V).

A special case of the Algebraic Stability Theorem
is the Persistence Equivalence Theorem [20]. This
particular version follows from the isometry theorem
[6], and we refer the reader to [13, Chapter 5] for an
expanded presentation of this material.

Theorem B.2. (Persistence Equivalence)

Consider two persistent vector spaces U = {U δ
µδ,δ′−−−→

U δ
′}δ≤δ′∈R and V = {V δ

νδ,δ′−−−→ V δ
′}δ≤δ′∈R with

connecting maps fδ : Uδ → V δ
′
.

· · · V δ V δ
′

V δ
′′ · · ·

· · · Uδ U δ
′

Uδ
′′ · · ·

fδ fδ′ fδ′′

If the fδ are all isomorphisms and each square in
the diagram above commutes, then:

Dgm(U) = Dgm(V).

C PPH and Dowker persistence

Definition C.1. Type I and II Dowker simplices
Let (X,AX) ∈ N , fix δ ∈ R, and let σ be a simplex
in Dsi

δ,X . Then we define σ to be a Type I simplex if
some x ∈ σ is a δ-sink for σ. Otherwise, σ is a Type
II simplex. Notice that if σ is a Type II simplex, then
there exists x 6∈ σ such that x is a δ-sink for σ.

We define analogous notions at the chain complex
level: a chain σ ∈ C•(D

si
δ,X) is of Type I if each ele-

ment in its expression corresponds to a Type I simplex.
Otherwise, σ is of Type II.

Lemma C.1. (Proposition 2.9, [26]) Let G be a fi-
nite digraph. Then any v ∈ Ω2(G) is a linear combina-
tion of the following three types of ∂-invariant 2-paths:

1. aba with edges (a, b), (b, a) (a double edge),

2. abc with edges (a, b), (b, c), (a, c) (a triangle), and

3. abc−adc with edges (a, b), (b, c), (a, d), (d, c), where
a 6= c and (a, c) is not an edge (a long square).

Lemma C.2. (Parity lemma) Fix a simplicial com-
plex K and a field Z/pZ for some prime p. Let
w :=

∑
i∈I biτi be a 2-chain in C2(K) where I is a

finite index set, each bi ∈ Z/pZ, and each τi is a
2-simplex in K. Let σ be a 1-simplex contained in
some τi such that σ does not appear in ∂∆

2 (w). De-
fine Jσ := {j ∈ I : σ a face of τj}. Then there exists
n(σ) ∈ N such that:

w =
∑

i∈I\Jσ

biτi +

n(σ)∑
j=1

(τ+
j + τ−j ),

where ∂∆
2 (τ+

j + τ−j ) is independent of σ for each 1 ≤
j ≤ n(σ).

Proof. [Proof of Lemma C.2] Since we are work-
ing over Z/pZ, we adopt the convention that bi ∈
{0, 1, . . . , p− 1} for each i ∈ I. Then for each j ∈ Jσ,
we know that ∂∆

2 (τj) contributes either +σ or −σ with
multiplicity bj . Write w =

∑
i∈I\Jσ biτi +

∑
j∈Jσ bjτj .

Since σ is not a summand of ∂∆
2 (w), it follows that∑

j∈Jσ bj = 0. Define:

J+
σ := {j ∈ Jσ : τj contributes + σ} ,
J−σ := {j ∈ Jσ : τj contributes − σ} .

Then w =
∑
i∈I\Jσ biτi +

∑
j∈J+

σ
bjτj +

∑
j∈J−σ bjτj .

Also define k := |J+
σ |, and enumerate J+

σ as

{j1, . . . , jk}. Write n+(σ) :=
∑k
m=1 bjk , where the sum

is taken over Z (not Z/pZ). Next define a finite sequence
(τ+

1 , . . . , τ
+
n+(σ)) as follows:

τ+
i := τj1 for i ∈ {1, . . . , bj1} ,
τ+
i := τj2 for i ∈ {bj1 + 1, . . . , bj1 + bj2} , . . . ,

τ+
i := τjk for i ∈

{
k−1∑
m=1

bjm + 1, . . . ,
k∑

m=1

bjm

}
.
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Here the indexing element i is of course taken over
Z and not Z/pZ. Similarly we define a sequence

(τ−1 , . . . , τ
−
n−(σ)). Then w =

∑
i∈I\Jσ biτi+

∑n+(σ)
m=1 τ+

m+∑n−(σ)
m=1 τ−m.

The expression for ∂∆
2 (w) contains +σ with mul-

tiplicity n+(σ) and −σ with multiplicity n−(σ), such
that the total multiplicity is 0, i.e. is a multiple of p.
Thus we have n+(σ) − n−(σ) ∈ pZ. There are two
cases: either n+(σ) ≥ n−(σ) or n+(σ) ≤ n−(σ). Both
cases are similar, so we consider the first. Let q be
a nonnegative integer such that n+(σ) = n−(σ) + pq.
We pad the τ− sequence by defining τ−i := τ−n−(σ) for

i ∈ {n−(σ) + 1, . . . , n−(σ) + pq}. Then we have:

w =
∑

i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n−(σ)∑
m=1

τ−m

=
∑

i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n−(σ)∑
m=1

τ−m +

n−(σ)+pq∑
m=n−(σ)+1

τ−m

=
∑

i∈I\Jσ

biτi +

n+(σ)∑
m=1

τ+
m +

n+(σ)∑
m=1

τ−m.

Theorem C.1. Let X = (X,AX) ∈ N be a square-free
network, and fix K = Z/pZ for some prime p. Then
DgmΞ

1 (X ) = DgmD
1 (X ).

Proof. [Proof of Theorem 4.3] Let δ ∈ R. First we wish
to find an isomorphism ϕδ : HΞ

1 (GδX)→ H∆
1 (Dsi

δ,X). We

begin with the basis B for Ω1(GδX). We claim that B is
just the collection of allowed 1-paths in GδX . To see this,
let ab be an allowed 1-path. Then ∂1(ab) = b−a, which
is allowed because the vertices a and b are automatically
allowed. Thus ab ∈ Ω1(GδX), and so B generates
Ω1(GδX).

Whenever ab is an allowed 1-path, we have a
directed edge (a, b) in GδX , and so AX(a, b) ≤ δ by
the definition of GδX . Thus the simplex [a, b] belongs
to Dsi

δ,X , with b as a δ-sink. Hence [a, b] is a 1-chain

in C1(Dsi
δ,X). Define a map ϕ̃δ : Ω1(GδX) → C1(Dsi

δ,X)
by setting ϕ̃δ(ab) = [a, b] and extending linearly. The
image of ϕ̃δ restricted to B is linearly independent
because any linear dependence relation would contradict
the independence of B. Furthermore, ϕ̃δ induces a
map ϕ̃′δ : ker(∂Ξ

1 ) → ker(∂∆
1 ). We need to check

that this descends to a map ϕd : ker(∂Ξ
1 )/ im(∂Ξ

2 ) →
ker(∂∆

1 )/ im(∂∆
2 ) on quotients. To see this, we need to

verify that ϕ̃′δ(im(∂Ξ
2 )) ⊆ im(∂∆

2 ).
By Lemma C.1, we have a complete characteri-

zation of Ω2(GδX). Thus we know that any element
of im(∂Ξ

2 ) is of the form ba + ab, bc − ac + ab, or

bc+ab−dc−ad. In the first case, we have ϕ̃′δ(ba+ab) =
[b, a] + [a, b] = [b, a] − [b, a] = 0 ∈ im(∂∆

2 ). The
next case corresponds to the situation where we have
abc ∈ Ω2(GδX) with edges (a, b), (b, c), (a, c) in GδX . In
this case, [a, b, c] is a 2-simplex in Dsi

δ,X , with c as a δ-
sink. Thus [b, c]− [a, c]+[a, b] = ϕ̃′δ(bc−ac+ab) belongs
to im(∂∆

2 ).
The final case cannot occur because GδX is square-

free. It follows that ϕ̃′δ(im(∂Ξ
2 )) ⊆ im(∂∆

2 ), and so we
obtain a well-defined map ϕδ : HΞ

1 (GδX)→ H∆
1 (Dsi

δ,X).
Next we check that ϕδ is injective. Let v =∑k

i=0 aiσi ∈ ker(ϕδ), where the ai terms belong to
the field K and each σi is a 1-path in GδX . Then

ϕδ(v) = ϕδ(
∑k
i=0 aiσi) = ∂∆

2 (
∑m
j=0 bjτj), where the bj

terms belong to K and each τj is a 2-simplex in Dsi
δ,X .

Claim. w :=
∑m
j=0 bjτj is homologous to a 2-cycle∑n

k=0 b
′
kτ
′
k in C2(Dsi

δ,X), where each τ ′k is of the form

[a, b, c] and abc is a triangle in GδX .

Suppose the claim is true. Then we immediately see
that v ∈ im(∂Ξ

2 ). Thus ker(ϕδ) = im(∂Ξ
2 ), and hence

ker(ϕδ) is trivial in HΞ
1 (GδX). This shows that ϕδ is

injective.
Let us now prove the claim. Suppose τj is a Type II

simplex, for some 0 ≤ j ≤ m. Write τj = [u, x, y]. Then
there exists z ∈ X such that z is a δ-sink for τj . But
then [u, x, y, z] ∈ Dsi

δ,X , and ∂∆
3 ([u, x, y, z]) = [x, y, z] −

[u, y, z]+[u, x, z]− [u, x, y]. Since ∂∆
2 ◦∂∆

3 = 0, it follows
that [u, x, y] is homologous to [x, y, z]−[u, y, z]+[u, x, z],
each of which is a Type I simplex. Using this argument,
we first replace all Type II simplices in w by Type I
simplices.

Next let τ be a Type I simplex in the rewritten ex-
pression for w. By taking a permutation and appending
a (−1) coefficient if needed, we can write τ = [x, y, z],
where z is the δ-sink for τ . Thus (x, z), (y, z) are edges
in GδX . If (x, y) or (y, x) is also an edge, then xyz is
a triangle, and we are done. Suppose that neither is
an edge, i.e. neither of xy, yx is in Ω1(GδX). Then,
since xy is not a summand of v, we know that [x, y]
is not a summand of ϕδ(v). Thus we are in the set-
ting of Lemma C.2, because ∂∆

2 (w) = ϕδ(v). De-
fine J := {0 ≤ j ≤ m : [x, y] a face of τj}. By applying
Lemma C.2, we can rewrite w:

w =
m∑

i6∈J,i=0

biτi +

n([x,y])∑
j=1

(τ+
j + τ−j ),

where all the summands of w containing [x, y] as a face
are paired in the latter term. Each τ+ + τ− summand
has the following form: [x, y] is a face of both τ+ and
τ−, and both τ+ and τ− are Type I simplices. Fix
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1 ≤ j ≤ n([x, y]). Then for some z, u ∈ X, τ+
j = [x, y, z]

and τ−j = [x, u, y] have the following arrangement:

x

y

zu

x

y

zu

x

y

zu

Since (X,AX) is square-free, we must have at least
one of the edges (z, u) or (u, z) in GδX . Suppose (z, u)
is an edge. Because we have

∂∆
3 ([x, y, z, u]) = [y, z, u]− [x, z, u] + [x, y, u]− [x, y, z],

it follows that [x, y, z] − [x, y, u] = [x, y, z] + [x, u, y] =
τ+
j + τ−j is homologous to [y, z, u]− [x, z, u], where yzu

and xzu are both triangles in GδX .
For the other case, suppose (u, z) is an edge. Be-

cause we have ∂∆
3 ([x, y, u, z]) = [y, u, z] − [x, u, z] +

[x, y, z] − [x, y, u], we again know that τ+
j + τ−j is ho-

mologous to [x, u, z] − [y, u, z], where xuz and yuz are
both triangles in GδX .

We can repeat this argument to replace all sum-
mands of w containing [x, y] as a face. Since τ = [x, y, z]
was arbitrary, this proves the claim.

It remains to verify that ϕδ is surjective. Let
v =

∑m
i=0 aiτi be a 1-cycle in C1(Dsi

δ,X). First we wish

to show that v is homologous to a 1-cycle v′ =
∑n
i=0 biτ

′
i

of Type I. Let τi be a Type II simplex in the expression
for v, for some 0 ≤ i ≤ m. Write τi = [x, y], and let z
be a δ-sink for τi. Then [x, y, z] is a simplex in Dsi

δ,X ,

and ∂∆
2 ([x, y, z]) = [y, z] − [x, z] + [x, y]. Thus [x, y] is

homologous to [x, z] − [y, z], each of which is a Type I
simplex. This argument shows that v is homologous to
a 1-cycle v′ of Type I.

Next let τ ′ be a 1-simplex in the expression for v′.
Write τ ′ = [x, y]. If x is the δ-sink for τ ′, then we replace
the τ ′ = [x, y] in the expression of v′ with −[y, x]. This
does not change v, since we have τ ′ = [x, y] = −[y, x]
in C1(Dsi

δ,X). After repeating this procedure for each
element of v′, we obtain a rewritten expression for v′ in
terms of elements [x, y] where y is the δ-sink for [x, y].
Let v′ =

∑n
i=0 b

′
i[xi, yi] denote this new expression.

Finally, observe that for each [xi, yi] in the rewritten
expression for v′, we also have (xi, yi) as an edge in GδX .

Thus
∑n
i=0 b

′
ixiyi is a 1-cycle inHΞ

1 (GδX) that is mapped
to v′ by ϕδ. It follows that ϕδ is surjective, and hence
is an isomorphism.

To complete the proof, let δ ≤ δ′ ∈ R. Consider the
inclusion maps ιG : GδX ↪→ Gδ

′

X and ιD : Dsi
δ,X ↪→ Dsi

δ′,X ,
and let (ιG)#, (ιD)# denote the induced maps at the
respective homology levels. Let v =

∑n
i=0 aixiyi be a

1-cycle in HΞ
1 (GδX). Then we have:

(ϕδ′ ◦ (ιG)#)

(
n∑
i=0

aixiyi

)

= ϕδ′

(
n∑
i=0

aixiyi

)

=
n∑
i=0

ai[xi, yi]

= (ιD)#

(
n∑
i=0

ai[xi, yi]

)

= ((ιG)# ◦ ϕδ)

(
n∑
i=0

ai[xi, yi]

)
.

Thus the necessary commutativity relation holds,
and the theorem follows by the Persistence Equivalence
Theorem.

Theorem C.2. Let Gn be a cycle network for some
integer n ≥ 3. Fix a field K = Z/pZ for some prime p.
Then DgmΞ

1 (Gn) = {(1, dn/2e)}.

Proof. [Proof of Theorem 4.4] From [17], we know that
DgmD

1 (Gn) = {(1, dn/2e)}. Thus by Theorem 4.3,
it suffices to show that Gn is square-free. Suppose
n ≥ 4, and let a, b, c, d be four nodes that appear
in Gn in clockwise order. First let δ ∈ R be such
that (a, b), (b, c), (a, d), (d, c) are edges in GδGn . Then
ωGn(d, c) ≤ δ, and because of the clockwise orientation
d � a � c, we automatically ωGn(a, c) ≤ δ. Hence
(a, c) is an edge in GδGn , and so the subgraph induced
by a, b, c, d is not a long square.

Next suppose δ ∈ R is such that
(a, b), (c, b), (a, d), (c, d) are edges in GδGn . Since
ωGn(c, b) ≤ δ and c � a � b in Gn, we have
ωGn(c, a) ≤ δ. Hence (c, a) is an edge in GδGn , and so
the subgraph induced by a, b, c, d is not a short square.

Theorem C.3. Let X = (X,AX) ∈ N be a symmetric
network, and fix K = Z/pZ for some prime p. Then
DgmΞ

1 (X ) = DgmD
1 (X ).

Proof. [Proof of Theorem 4.2] The proof is similar to
that of Theorem 4.3; instead of repeating all details,
we will show how the argument changes when the
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square-free assumption is replaced by the symmetry
assumption. Let δ ∈ R, and consider the map ϕ̃′δ :
ker(∂Ξ

1 ) → ker(∂∆
1 ) defined as in Theorem 4.3. As

before, we need to check that this descends to a map
ϕd : ker(∂Ξ

1 )/ im(∂Ξ
2 ) → ker(∂∆

1 )/ im(∂∆
2 ) on quotients.

For this we need to verify that ϕ̃′δ(im(∂Ξ
2 )) ⊆ im(∂∆

2 ).
By Lemma C.1, we know that any element of im(∂Ξ

2 )
is of the form ba+ ab, bc− ac+ ab, or bc+ ab− dc− ad.
For the first two cases, we can repeat the argument
used in Theorem 4.3. The final case corresponds to the
situation where we have a long square in GδX consisting
of edges (a, b), (b, c), (a, d), and (d, c). This gives the 2-
chain abc − adc. Now by the symmetry condition, we
also have edges (c, d) and (c, b). Thus [a, b, c] is a 2-
simplex in Dsi

δ,X , with b as a δ-sink, and [a, d, c] is a
2-simplex with d as a δ-sink. Hence [a, b, c]− [a, d, c] is
a 2-chain in C2(Dsi

δ,X). Thus ϕ̃′δ(bc + ab − dc − ad) =

[b, c] + [a, b]− [d, c]− [a, d] belongs to im(∂∆
2 ). Thus we

obtain a well-defined map ϕδ : HΞ
1 (GδX)→ H∆

1 (Dsi
δ,X).

Next we need to check that ϕδ is injective. As
in Theorem 4.3, let v ∈ ker(ϕδ). Then ϕδ(v) =

ϕδ(
∑k
i=0 aiσi) = ∂∆

2 (
∑m
j=0 bjτj), where the ai, bj terms

belong to the field K, each σi is a 1-path in GδX , and each
τj is a 2-simplex in Dsi

δ,X . We proceed by proving an
analogue of the claim in Theorem 4.3 in the symmetric
setting. Write w :=

∑m
j=0 bjτj . We need to show that

w is homologous to a 2-cycle
∑n
k=0 b

′
kτ
′
k in C2(Dsi

δ,X),
where each τ ′k is of the form [a, b, c] and abc is either a
triangle or part of a square in GδX .

As in the proof of Theorem 4.3, we first replace all
Type II simplices in w by Type I simplices. Next let
τ = [x, y, z] be a Type I simplex in w, and suppose z is
the δ-sink for τ , but neither of (x, y), (y, x) is an edge.
As in the proof of Theorem 4.3, we apply Lemma C.2 to
separate the summands of w containing [x, y] as a face
into pairs of the form (τ+ + τ−). Writing τ+ = [x, z, y]
and τ− = [x, y, u], we obtain the following arrangement:

x

y

zu

x

y

zu

By the symmetry assumption, (z, y) and (u, y) are
also edges in GδX , and so xuy, xzy are both allowed 2-
paths. Since τ− = [x, y, u] = −[x, u, y], we can replace
τ+ + τ− by [x, z, y] − [x, u, y], where xzy − xuy is a
square in GδX . Proceeding in this way, we replace each
summand of w containing [x, y] as a face. We repeat
this argument for each choice of τ = [x, y, z] in the
expression for w.

Finally, we obtain an expression of w such that there
exists v′ ∈ Ω2(GδX) satisfying ϕδ(v

′) = w. Then we
have ∂Ξ

2 (v′) = v, and so v = 0 in HΞ
1 (GδX). Thus ϕδ is

injective.
We omit the remainder of the argument, because

it is a repeat of the corresponding part of the proof
of Theorem 4.3. In summary, it turns out that ϕδ
is surjective, hence an isomorphism, and furthermore
that it commutes with the linear maps induced by the
canonical inclusions. This concludes the proof.

D The modified persistence algorithm

We use the notation introduced in §5. By our observa-
tions in §5, computing bases for the filtered chain com-
plex {Ωi• → Ωi+1

• }Ni=1 can be done simultaneously while
performing the column reduction operations needed for
persistence, and this does not cause any additional over-
head. For notational convenience, we use a collection
T0, . . . , TD+1 of linear arrays, where each Tp contains a
slot for each elementary regular p-path. Specifically, for
each vpj ∈ Bp (the chosen basis for Rp), Tp contains a
slot labeled (vpj , et(v

p
j ), at(vpj )) which can store a linked

list of (p− 1)-paths and an integer corresponding to an
entry time. We sort each Tp according to increasing al-
low time and relabel Bp if needed so that vpj is the label
of Tp[j]. Thus it makes sense to talk about the index
of vpj in Tp: we define index(vpj ) = j, and Tp[index(vpj )]
is labeled by (vpj , et(v

p
j ), at(vpj )). Note that if v, v′ ∈ Bp

are such that index(v) ≤ index(v′), then at(v) ≤ at(v′).
Below we present a modified version of the algo-

rithm in [36] that computes PPH. We make one last
remark, based on an observation in [36]: because of the
relation ∂p ◦∂p+1, a pivot column of the reduced bound-
ary matrix Mp,G corresponds to a zero row in Mp+1,G.
Thus whenever we compute ∂p(v) in our algorithm, we
can immediately remove the summands that correspond
to pivot terms in Mp−1,G. This is done in Algorithm 2.
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Algorithm 1 Computing persistent path homology

1: procedure ComputePPH(X , D + 1) . Compute
PPH of network X up to dimension D

2: for p = 0, . . . , D do
3: Persp = ∅; . Store intervals here
4: for j = 1, . . . ,dim(Rp+1) do

5: [u, i, et] =BasisChange(vp+1
j , p+ 1);

6: if u = 0 then Mark Tp+1[j];
7: else
8: Tp[i]← (u, et);
9: Add (et(vpi ), et) to Persp;

10: for j = 1, . . . ,dim(Rp) do
11: if Tp[j] marked and empty then
12: Add (et(vpj ),∞) to Persp;

13: return Pers0, . . . ,PersD;

Algorithm 2 Left-to-right column reduction

1: procedure BasisChange(v,dim) . Find pivot or
zero columns

2: p ← dim; u = ∂p(v); Remove unmarked (pivot)
terms from u;

3: while u 6= 0 do
4: σ ← argmax{index(τ) :
τ is a summand of u};

5: i← index(σ);
6: et← max(at(v), at(σ));
7: if Tp−1[i] is unoccupied then break;

8: Let a, b be coefficients of σ in Tp−1[i] and u,
respectively;

9: u← u− (a/b)Tp−1[i]; . Column reduction
step

10: return u, i, et;
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