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Abstract
We study two methods for computing network features with topological underpin-
nings: the Rips and Dowker persistent homology diagrams. Our formulations work
for general networks, which may be asymmetric and may have any real number as
an edge weight. We study the sensitivity of Dowker persistence diagrams to asym-
metry via numerous theoretical examples, including a family of highly asymmetric
cycle networks that have interesting connections to the existing literature. In particu-
lar, we characterize the Dowker persistence diagrams arising from asymmetric cycle
networks. We investigate the stability properties of both the Dowker and Rips per-
sistence diagrams, and use these observations to run a classification task on a dataset
comprising simulated hippocampal networks. Our theoretical and experimental results
suggest that Dowker persistence diagrams are particularly suitable for studying asym-
metric networks. As a stepping stone for our constructions, we prove a functorial
generalization of a theorem of Dowker, after whom our constructions are named.
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1 Introduction

Networks are used throughout the sciences for representing the complex relations
that exist between the objects of a dataset (Newman 2003; Easley and Kleinberg
2010). Network data arises from applications in social science (Kumar et al. 2010;
Easley and Kleinberg 2010), commerce and economy (Elliott et al. 2014; Easley and
Kleinberg 2010; Acemoglu et al. 2015), neuroscience (Sporns 2011, 2012; Sporns
and Kötter 2004; Rubinov and Sporns 2010; Pessoa 2014), biology (Barabási and
Oltvai 2004; Huson et al. 2010), and defence (Masys 2014), to name a few sources.
Networks are often directed, in the sense that weights attached to edges do not satisfy
any symmetry property, and this asymmetry often precludes the applicability of many
standard methods for data analysis.

Network analysis problems come in a wide range of flavors. One problem is in
exploratory dataanalysis: given anetwork representing adataset of societal, economic,
or scientific value, the goal is to obtain insights that are meaningful to the interested
party and that can help uncover interesting phenomena. Another problem is network
classification: given a “bag” of networks representing multiple instances of different
phenomena, one wants to obtain a clustering which groups the networks together
according to the different phenomena they represent.

Because networks are often too complex to deal with directly, one typically extracts
certain invariants of networks, and infers structural properties of the networks from
properties of these invariants. While there are numerous such network invariants in
the existing literature, there is growing interest in adopting a particular invariant aris-
ing from persistent homology (Frosini 1992; Robins 1999; Edelsbrunner et al. 2002;
Zomorodian and Carlsson 2005), known as a persistence diagram, to the setting of
networks. Persistence diagrams are used in the context of finite metric space or point
cloud data to pick out features of significance while rejecting random noise (Edels-
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brunner et al. 2002; Carlsson 2009). Since a network on n nodes is regarded, in the
most general setting, as an n × n matrix of real numbers, i.e. as a generalized metric
space, it is conceivable that one should be able to describe persistence diagrams for
networks as well.

Themotivation for computing persistence diagrams of networks is at least two-fold:
(1) comparing persistence diagrams has been shown to be a viable method for shape
matching applications (Frosini 1992; Frosini and Landi 1999; Collins et al. 2004;
Cohen-Steiner et al. 2007; Carlsson et al. 2005; Chazal et al. 2009), analogous to the
network classification problem described above, and (2) persistence diagrams have
been successfully applied to feature detection, e.g. in detecting the structure of protein
molecules (see Krishnamoorthy et al. 2007; Xia andWei 2014 and Edelsbrunner et al.
2002, §6) and solid materials (see Hiraoka et al. 2016) and might thus be a useful tool
for exploratory analysis of network datasets.

We point the reader to Ghrist (2008), Edelsbrunner and Harer (2008), Carlsson
(2009), Carlsson and Silva (2010), Weinberger (2011), Burghelea and Dey (2013) and
Dey et al. (2014) for surveys of persistent homology and its applications, and some
recent extensions.

Some extant approaches that obtain persistence diagrams from networks assume
that the underlying network data actually satisfies metric properties (Lee et al. 2011;
Khalid et al. 2014). A more general approach for obtaining persistence diagrams from
networks is followed in Horak et al. (2009), Carstens and Horadam (2013), Giusti
et al. (2015) and Petri et al. (2013), albeit with the restriction that the input data sets
are required to be symmetric matrices.

Our chief goal is to devise notions of persistent homology that are directly applicable
to asymmetric networks in the most general sense, and are furthermore capable of
absorbing structural information contained in the asymmetry.

1.1 Contributions and an overview of our approach

In this paper, we study two types of persistence diagrams: the Rips and Dowker dia-
grams.Wedefineboth invariants in the settingof asymmetric networkswith real-valued
weights, without assuming any metric properties at all (not symmetry and not even
that the matrix representing the networks weights vanishes on the diagonal). As a key
step in defining the Dowker persistence diagram, we first define two dual construc-
tions, each of which can be referred to as a Dowker persistence diagram, and then
prove a functorial Dowker theorem which implies that these two possible diagrams
are equivalent. Following the line of work in Chazal et al. (2009), where stability of
Rips persistence diagrams arising from finite metric spaces was first established, we
formulate similar stability results for the Rips and Dowker persistence diagrams of
a network. Through various examples, in particular a family of cycle networks, we
espouse the idea that Dowker persistence diagrams aremore appropriate than Rips per-
sistence diagrams for studying asymmetric networks. We test our methods by solving
a network classification problem on a database of simulated hippocampal networks.

The first step in constructing a persistence diagram from a network is to construct
a nested sequence of simplicial complexes, i.e. a simplicial filtration, which, in our
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work, will be the Rips orDowker filtrations associated to a network. Rips and Dowker
simplicial complexes and their associated filtrations are classically defined for metric
spaces (De Silva and Carlsson 2004; Ghrist 2014), and the generalization to networks
that we use is a natural extension of the metric versions. After producing the simplicial
filtrations, the standard framework of persistent homology takes over, and we obtain
the Rips or Dowker persistence diagrams.

Practitioners of persistent homology might recall that there are two Dowker com-
plexes (Ghrist 2014, p. 73), which we describe as the source and sink Dowker
complexes. A subtle point to note here is that each of these Dowker complexes can be
used to construct a persistence diagram. A folklore result in the literature about persis-
tent homology of metric spaces, known as Dowker duality, is that the two persistence
diagrams arising this way are equal (Chazal et al. 2014, Remark 4.8). In this paper
we prove a stronger result—a functorial Dowker theorem—from which the duality
follows easily. Furthermore, the context of this result is strictly more general than that
of metric spaces (see below for a more thorough description of the functorial version
of Dowker’s theorem).

Providing a construction of Rips andDowker persistence diagrams is not enough: in
order for these invariants to be useful in practice, one must verify that the diagrams are
stable. In this context, stabilitymeans the following: the dissimilarity between twoRips
(resp. Dowker) persistence diagrams obtained from two networks should be bounded
above by a function of the dissimilarity between the two networks. To our knowledge,
stability is not addressed in the existing literature on producing persistence diagrams
from networks. In our work, we provide stability results for both the Rips and Dowker
persistence diagrams (Propositions 12 and 15). One key ingredient in our proof of
this result is a notion of network distance that follows previous work in Carlsson et al.
(2014) and Chowdhury andMémoli (2015, 2016). This network distance is analogous
to the Gromov–Hausdorff distance between metric spaces, which has previously been
used to prove stability results for hierarchical clustering (Carlsson and Mémoli 2008,
2010) and Rips persistence diagrams obtained from finite metric spaces (Chazal et al.
2009, Theorem 3.1). The Gromov–Hausdorff distance was later used in conjunction
with the Algebraic Stability Theorem of Chazal et al. (2009) to provide alternative
proofs of stability results for Rips and Dowker persistence diagrams arising from
metric spaces (Chazal et al. 2014). Our proofs also involve this Algebraic Stability
Theorem, but the novelty of our approach lies in a reformulation of the network
distance (Proposition 9) that yields direct maps between two networks, thus passing
naturally into the machinery of the Algebraic Stability Theorem (without having to
define auxiliary constructions such as multivalued maps, as in Chazal et al. (2014)).

A crucial issue that we point out in this paper is that even though we can construct
both Rips and Dowker persistence diagrams out of asymmetric networks, Rips persis-
tence diagrams appear to beblind to asymmetry,whereasDowker persistence diagrams
do exhibit sensitivity to asymmetry. In the case of Rips complexes, this purported
insensitivity to asymmetry can be immediately seen from its definition. In the case of
Dowker complexes, we argue about its sensitivity to asymmetry in two different ways.
Firstly, we do so by explicitly computing Dowker persistence diagrams of multiple
examples of asymmetric networks. In particular, we consider a family of highly asym-
metric networks, the cycle networks, and by building upon results from Adamaszek
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Fig. 1 A schematic of some of the objects studied in this paper.N is the collection of all weighted, directed
networks (i.e. digraphs with possibly asymmetric real weights). F is the collection of filtered simplicial
complexes. Dgm is the collection of persistence diagrams. We study the Rips (R) and Dowker (Dsi,Dso)
filtrations, each of which takes a network as input and produces a filtered simplicial complex. s and t
denote the network transformations of symmetrization (replacing a pair of weights between two nodes by
the maximum weight) and transposition (swapping the weights between pairs of nodes). R is insensitive
to both s and t. But Dsi ◦ t = Dso, Dso ◦ t = Dsi, and in general, Dsi and Dso are not invariant under t
(Theorem 43)

and Adams (2017) and Adamaszek et al. (2016) we prove a complete characterization
result for the Dowker persistence diagrams—across all dimensions—of any network
belonging to this family. These networks constitute directed analogues of circles and
may be motifs of interest in different applications related to network data analysis.
More specifically, appearance of nontrivial 1-dimensional persistence in the Dowker
persistence diagram of asymmetric network data may suggest the presence of directed
cycles in the data.

Some of our experimental results suggest that the Rips persistence diagrams of this
family of networks are pathological, in the sense that they do not represent the signa-
tures one would expect from the underlying dataset, which is a directed circle. Dowker
persistence diagrams, on the other hand, are well-behaved in this respect in that they
succeed at capturing relevant features. Secondly, we study the degree to whichDowker
persistence diagrams are insensitive to changes (such as edge flips, or transposition)
in the network structure. An overview of this thread of work is provided in Fig. 1.

Dowker’s theorem and a functorial generalization Let X ,Y be two totally ordered
sets, and let R ⊆ X × Y be a nonempty relation. Then one defines two simplicial
complexes ER and FR as follows. A finite subset σ ⊆ X belongs to ER whenever
there exists y ∈ Y such that (x, y) ∈ R for each x ∈ σ . Similarly a finite subset τ ⊆ Y
belongs to FR whenever there exists x ∈ X such that (x, y) ∈ R for each y ∈ τ . These
constructions can be traced back to Dowker (1952), who proved the following result
that we refer to as Dowker’s theorem:

Theorem 1 (Dowker’s theorem; Theorem 1a, Dowker 1952) Let X , Y be two totally
ordered sets, let R ⊆ X × Y be a nonempty relation, and let ER, FR be as above.
Then for each k ∈ Z+,

Hk(ER) ∼= Hk(FR).

There is also a strong formofDowker’s theorem that Björner proves via the classical
nerve theorem (Björner 1995, Theorems 10.6, 10.9). Below we write |X | to denote
the geometric realization of a simplicial complex X .
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Theorem 2 (The strong form of Dowker’s theorem; Theorem 10.9, Björner 1995)
Under the assumptions of Theorem 1, we in fact have |ER | ≃ |FR |.

The Functorial Dowker Theorem is the following generalization of the strong form
of Dowker’s theorem: instead of a single nonempty relation R ⊆ X × Y , consider
any pair of nested, nonempty relations R ⊆ R′ ⊆ X × Y . Then there exist homotopy
equivalences between the geometric realizations of the corresponding complexes that
commute with the canonical inclusions, up to homotopy. We formalize this statement
below.

Theorem 3 (The functorial Dowker theorem (FDT)) Let X , Y be two totally ordered
sets, let R ⊆ R′ ⊆ X × Y be two nonempty relations, and let ER, FR, ER′ , FR′

be their associated simplicial complexes. Then there exist homotopy equivalences
#|ER | : |FR | → |ER | and #|ER′ | : |FR′ | → |ER′ | such that the following diagram
commutes up to homotopy:

|FR | |FR′ |

|ER | |ER′ |

|ιE |

|ιF |

#|ER | ≃ #|ER′ |≃

In other words, we have |ιF |◦#|ER | ≃ #|ER′ | ◦ |ιE |, where ιE , ιF are the canonical
inclusions.

From Theorem 3 we automatically obtain Theorem 2 (the strong form of Dowker’s
theorem) as an immediate corollary. The strong form does not appear in Dowker’s
original paper (Dowker 1952), but Björner has given a proof using the nerve theorem
(Björner 1995, Theorems 10.6, 10.9). Moreover, Björner writes in a remark following
(Björner 1995, Theorem 10.9) that the nerve theorem and the strong form of Dowker’s
theorem are equivalent, in the sense that one implies the other.Wewere not able to find
an elementary proof of the strong form of Dowker’s theorem in the existing literature.
However, such an elementary proof is provided by our proof of Theorem 3 (given
in Sect. 5.1), which we obtained by extending ideas in Dowker’s original proof of
Theorem 1.1

Whereas the Functorial Dowker Theorem and our elementary proof are of inde-
pendent interest, it has been suggested in Chazal et al. (2014, Remark 4.8) that such a
functorial version of Dowker’s theorem could also be proved using a functorial nerve
theorem (Chazal and Oudot 2008, Lemma 3.4). Despite being an interesting possibil-
ity, we were not able to find a detailed proof of this claim in the literature. In addition,
Björner’s remark regarding the equivalence between the nerve theorem and the strong
form of Dowker’s theorem suggests the following question:

1 A thread with ideas towards the proof of Theorem 2 was discussed in https://ncatlab.org/nlab/show/
Dowker%27s+theorem (Accessed 24Apr 2017), but the proposed strategywas incomplete.Wehave inserted
an addendum in https://ncatlab.org/nlab/show/Dowker%27s+theorem proposing a complete proof with a
slightly different construction.
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Question 1 Are the Functorial Nerve Theorem (FNT) ofChazal and Oudot (2008) and
the Functorial Dowker Theorem (FDT, Theorem 3) equivalent?

This question is of fundamental importance because the Nerve Theorem is a crucial
tool in the applied topology literature and its functorial generalizations are equally
important in persistent homology. In general, the answer is no, and moreover, one (of
the FNT and FDT) is not stronger than the other. The FNT of Chazal and Oudot (2008)
is stated for paracompact spaces, which aremore general than the simplicial complexes
of the FDT. However, the FNT of Chazal and Oudot (2008) is stated for spaces with
finitely-indexed covers, so the associated nerve complexes are necessarily finite. All
the complexes involved in the statement of the FDT are allowed to be infinite, so the
FDT is more general than the FNT in this sense.

To clarify these connections, we formulate a simplicial Functorial Nerve Theorem
(Theorem 26) and prove it via a finite formulation of the FDT (Theorem 24). In turn,
we show that the simplicial FNT implies the finite FDT, thus proving the equivalence
of these formulations (Theorem 27).

Remark 4 Dowker complexes are also known to researchers who use Q-analysis to
study social networks (Johnson 2013; Atkin 1972, 1975). We perceive that viewing
Dowker complexes through the modern lens of persistence will enrich the classical
framework of Q-analysis by incorporating additional information about the meaning-
fulness of features, thus potentially opening new avenues in the social sciences.

An announcement of part of our work has appeared in Chowdhury and Mémoli
(2016).

1.2 Implementations

Followingwork in Curto and Itskov (2008) andDabaghian et al. (2012), we implement
ourmethods in the setting of classifying simulated hippocampal networks.We simulate
the activity pattern of hippocampal cells in an animal as it moves around arenas with
a number of obstacles, and compile this data into a network which can be interpreted
as the transition matrix for the time-reversal of a Markov process. The motivating
idea is to ascertain whether, by just observing hippocampal activity and not using any
higher reasoning ability, one might be able to determine the number of obstacles in the
arena that the animal has just finished traversing. The results of computing Dowker
persistence diagrams suggest that the hippocampal activity is indeed sufficient to
accurately count the number of obstacles in each arena.

Our datasets and software are available on https://research.math.osu.edu/networks/
Datasets.html as part of the PersNet software package.

1.3 Organization of the paper

Notation used globally is defined directly below. Section 2 contains the necessary back-
ground on persistent homology. Section 3 contains our formulations for networks, as
well as some key ingredients of our stability results. Section 4 contains details about
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the Rips persistence diagram. The first part of Sect. 5 contains details about theDowker
persistence diagram. Section 5.1 contains the Functorial Dowker Theorem. The con-
nection between the simplicial Functorial Nerve Theorem and the finite Functorial
Dowker Theorem is detailed in Sect. 5.2. In Sect. 6 we show that Dowker complexes
are sensitive to asymmetry. Section 6.1 contains a family of asymmetric networks, the
cycle networks, and a full characterization of their Dowker persistence diagrams. In
Sect. 7 we provide details on an implementation of our methods. Finally, proofs of
statements not contained in the main body of the paper are relegated to Appendix A,
whereas details about the characterization results for Dowker persistence diagrams of
cycle networks are given in Appendix B.

1.4 Notation

We will writeK to denote a field, which we will fix and use throughout the paper. We
will write Z+ and R+ to denote the nonnegative integers and reals, respectively. The
extended real numbersR∪{∞,−∞}will be denotedR. The cardinality of a set X will
be denoted card(X). The collection of nonempty subsets of a set X will be denoted
pow(X). The natural numbers {1, 2, 3, . . .} will be denoted by N. The dimension of a
vector space V will be denoted dim(V ). The rank of a linear transformation f will be
denoted rank( f ). An isomorphism between vector spaces V and W will be denoted
V ∼= W . A homotopy relation for two maps f , g : X → Y between topological
spaces will be denoted f ≃ g. Occasionally we will need to take about multisets, i.e.
sets where elements can have multiplicity greater than 1. We will use square bracket
notation [. . .] to denote multisets. Identity maps will be denoted by the notation id•.
Given a simplicial complex %, we will often write V (%) to denote the vertex set of
%. We will write Bd(σ ) to denote the boundary of a simplex σ .

We say that a map F : C → D between categories C and D is functorial whenever
F satisfies the properties of being a functor between C and D (see Mac Lane 2013
for definitions of these terms). In this paper, the most common usage of “functorial”
is in the following scenario. Suppose we have sets R, R′ related by an inclusion
R ⊆ R′ along with geometric simplicial complexes AR, BR, AR′ , BR′ and homotopy
equivalences fR : AR → BR, fR′ : AR′ → BR′ . The assignment R ,→ (AR, BR, fR)
is functorial if fR′ ◦ ιA ≃ ιB ◦ fR . Here ιA : AR ↪→ AR′ and ιB : BR ↪→ BR′ are
inclusions induced by the inclusion R ⊆ R′.

2 Background on persistent homology

We assume that the reader is familiar with terms and concepts related to simplicial
homology, and refer to Munkres (1984) for details. Here we describe our choices
of notation. Whenever we have a simplicial complex over a set X and a k-simplex
{x0, x1, . . . , xk}, k ∈ Z+, we will assume that the simplex is oriented by the ordering
x0 < x1 < · · · < xk . We will write [x0, x1, . . . , xk] to denote the equivalence class
of the even permutations of this chosen ordering, and −[x0, x1, . . . , xk] to denote
the equivalence class of the odd permutations of this ordering. Given a simplicial
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complex %, we will denote its geometric realization by |%|. The weak topology on
|%| is defined by requiring that a subset A ⊆ |%| is closed if and only if A ∩ |σ | is
closed in |σ | for each σ ∈ %. A simplicial map f : % → ' between two simpli-
cial complexes induces a map | f | : |%| → |' | between the geometric realizations,
defined as | f |(∑v∈% avv) := ∑

v∈% av f (v). These induced maps satisfy the usual
composition identity: given simpicial maps f : % → ' and g : ' → ϒ , we have
|g ◦ f | = |g| ◦ | f |. To see this, observe the following:

|g ◦ f |
(

∑

v∈%

avv

)

=
∑

v∈%

avg( f (v)) = |g|
(

∑

v∈%

av f (v)

)

= |g| ◦ | f |
(

∑

v∈%

avv

)

.

(1)
A filtration of a simplicial complex % (also called a filtered simplicial complex) is

defined to be a nested sequence {%δ ⊆ %δ′}δ≤δ′∈R of simplicial complexes satisfying
the condition that there exist δI , δF ∈ R such that %δ = ∅ for all δ ≤ δI , and
%δ = % for all δ ≥ δF .

Fix a fieldK. Given a finite simplicial complex % and a dimension k ∈ Z+, we will
denote a k-chain in % as

∑
i aiσi , where each ai ∈ K and each σi ∈ % is a k-simplex.

We write Ck(%) or just Ck to denote theK-vector space of all k-chains. We will write
∂k to denote the associated boundary map ∂k : Ck → Ck−1:

∂k[x0, . . . , xk] :=
∑

i

(−1)i [x0, . . . , x̂i , . . . , xk],

where x̂i denotes omission of xi from the sequence.

We will write C = (Ck, ∂k)k∈Z+ to denote a chain complex, i.e. a sequence of
vector spaces with boundary maps such that ∂k−1 ◦ ∂k = 0. Given a chain complex
C and any k ∈ Z+, the kth homology of the chain complex C is denoted Hk(C) :=
ker(∂k)/ im(∂k+1). The kth Betti number of C is denoted βk(C) := dim(Hk(C)).

Given a simplicial map f between simplicial complexes, we write f∗ to denote
the induced chain map between the corresponding chain complexes (Munkres 1984,
§1.12), and ( fk)# to denote the linear map on kth homology vector spaces induced for
each k ∈ Z+.

The operations of passing from simplicial complexes and simplicial maps to chain
complexes and induced chain maps, and then to homology vector spaces with induced
linear maps, will be referred to as passing to homology. Recall the following useful
fact, often referred to as functoriality of homology (Munkres 1984, Theorem 12.2):
given a composition g ◦ f of simplicial maps, we have

(gk ◦ fk)# = (gk)# ◦ ( fk)# for each k ∈ Z+. (2)

A persistence vector space is defined to be a family of vector spaces {U δ
µδ,δ′−−→

U δ′}δ≤δ′∈R such that: (1) µδ,δ is the identity for each δ ∈ R, and (2) µδ,δ′′ = µδ′,δ′′ ◦
µδ,δ′ for each δ ≤ δ′ ≤ δ′′ ∈ R. The persistence vector spaces that we consider in this
work also satisfy the following conditions: (1) dim(U δ) < ∞ at each δ ∈ R, (2) there
exist δI , δF ∈ R such that all maps µδ,δ′ are isomorphisms for δ, δ′ ≥ δF and for
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δ, δ′ ≤ δI , and (3) there are only finitely many values of δ ∈ R such that U δ−ε " U δ

for each ε > 0. Here δ is referred to as a resolution parameter, and such a persistence
vector space is described as being R-indexed. The collection of all such persistence
vector spaces is denoted PVec(R). Observe that by fixing k ∈ Z+ and passing to the
kth homology vector space at each step %δ of a filtered simplicial complex (%δ)δ∈R,
the functoriality of homology gives us the kth persistence vector space associated to
(%δ)δ∈R, denoted

Hk(%) := {Hk(Cδ)
(ιδ,δ′ )#−−−−→ Hk(Cδ′)}δ≤δ′∈R.

The elements of PVec(R) contain only a finite number of vector spaces, up to
isomorphism. By the classification results in (Carlsson et al. 2005, §5.2), it is possible
to associate a full invariant, called a persistence barcode or persistence diagram, to
each element of PVec(R). This barcode is a multiset of persistence intervals, and is
represented as a set of lines over a single axis. The barcode of a persistence vector space
V is denoted Pers(V). The intervals in Pers(V) can be represented as the persistence
diagram of V , which is as a multiset of points lying on or above the diagonal in R2

,
counted with multiplicity. More specifically,

Dgm(V) :=
[
(δi , δ j+1) ∈ R2 : [δi , δ j+1) ∈ Pers(V)

]
,

where the multiplicity of (δi , δ j+1) ∈ R2
is given by the multiplicity of [δi , δ j+1) ∈

Pers(V).
Persistence diagrams can be compared using the bottleneck distance, which we

denote by dB. Details about this distance, as well as the other material related to
persistent homology, can be found in Chazal et al. (2016). Numerous other formu-
lations of the material presented above can be found in Edelsbrunner et al. (2002,
2015), Zomorodian and Carlsson (2005), Carlsson and Silva (2010), Edelsbrunner
and Harer (2010), Edelsbrunner and Morozov (2014) and Bauer and Lesnick (2014).

Remark 5 Whenever we describe a persistence diagram as being trivial, we mean that
either it is empty, or it does not have any off-diagonal points.

2.1 Interleaving distance and stability of persistence vector spaces

In what follows, we will consider R-indexed persistence vector spaces PVec(R).
Given ε ≥ 0, twoR-indexed persistence vector spaces V = {V δ

νδ,δ′−−→ V δ′}δ≤δ′ and

U = {U δ
µδ,δ′−−→ U δ′}δ≤δ′ are said to be ε-interleaved (Chazal et al. 2009; Bauer and

Lesnick 2014) if there exist two families of linear maps

{ϕδ,δ+ε : V δ → U δ+ε}δ∈R,
{ψδ,δ+ε : U δ → V δ+ε}δ∈R
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such that the following diagrams commute for all δ ≤ δ′ ∈ R:

V δ V δ′ V δ+ε V δ′+ε

U δ+ε U δ′+ε U δ U δ′

νδ,δ′

ϕδ

ϕδ′

νδ+ε,δ′+ε

µδ+ε,δ′+ε

ψδ

µδ,δ′ ψδ′

V δ V δ+2ε V δ+ε

U δ+ε U δ U δ+2ε

νδ,δ+2ε

ϕδ

ϕδ+ε

ψδ+ε

ψδ

µδ,δ+2ε

The purpose of introducing ε-interleavings is to define a pseudometric on the col-
lection of persistence vector spaces. The interleaving distance between twoR-indexed
persistence vector spaces V,U is given by:

dI(U ,V) := inf{ε ≥ 0 : U and V are ε-interleaved}.

This definition induces a pseudometric on the collection of persistence vector
spaces (Chazal et al. 2009; Bauer and Lesnick 2014). The interleaving distance is
then related to the bottleneck distance as follows:

Theorem 6 (Algebraic stability theorem, Chazal et al. 2009) Let U ,V be two R-
indexed persistence vector spaces. Then,

dB(Dgm(U),Dgm(V)) ≤ dI(U ,V).

Stability results are at the core of persistent homology, beginning with the classical
bottleneck stability result in Cohen-Steiner et al. (2007). One of our key contributions
is to use the Algebraic Stability Theorem stated above, along with Lemma Sect. 3
stated below, to prove stability results for methods of computing persistent homology
of a network.

Before stating the following lemma, recall that two simplicial maps f , g : % → '

are contiguous if for any simplex σ ∈ %, f (σ )∪ g(σ ) is a simplex of ' . Contiguous
maps satisfy the following useful properties:

Proposition 7 (Properties of contiguous maps) Let f , g : % → ' be two contiguous
simplicial maps. Then,

(1) | f |, |g| : |%| → |' | are homotopic (Spanier 1994, §3.5), and
(2) The chain maps induced by f and g are chain homotopic, and as a result, the

induced maps f# and g# for homology are equal (Munkres 1984, Theorem 12.5).

Lemma 8 (Stability Lemma) Let F,G be two filtered simplicial complexes written as

{Fδ
sδ,δ′−−→ Fδ′}δ′≥δ∈R and {Gδ

tδ,δ′−−→ Gδ′}δ′≥δ∈R,
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where sδ,δ′ and tδ,δ′ denote the natural inclusionmaps. Suppose η ≥ 0 is such that there
exist families of simplicial maps

{
ϕδ : Fδ → Gδ+η

}
δ∈R and

{
ψδ : Gδ → Fδ+η

}
δ∈R

such that the following are satisfied for any δ ≤ δ′:

(1) tδ+η,δ′+η ◦ ϕδ and ϕδ′ ◦ sδ,δ′ are contiguous
(2) sδ+η,δ′+η ◦ ψδ and ψδ′ ◦ tδ,δ′ are contiguous
(3) ψδ+η ◦ ϕδ and sδ,δ+2η are contiguous
04 ϕδ+η ◦ ψδ and tδ,δ+2η are contiguous.

All the diagrams are as below:

Fδ Fδ′ Fδ+η Fδ′+η

Gδ+η Gδ′+η Gδ Gδ′

sδ,δ′

ϕδ

ϕδ′

sδ+η,δ′+η

tδ+η,δ′+η

ψδ

tδ,δ′ ψδ′

Fδ Fδ+2η Fδ+η

Gδ+η Gδ Gδ+2η

sδ,δ+2η

ϕδ

ϕδ+η

ψδ+η

ψδ

tδ,δ+2η

For each k ∈ Z+, let Hk(F),Hk(G) denote the k-dimensional persistence vector
spaces associated to F and G. Then for each k ∈ Z+,

dB(Dgmk(Hk(F)),Dgmk(Hk(G))) ≤ dI(Hk(F),Hk(G)) ≤ η.

3 Background on networks and our network distance

A network is a pair (X ,ωX ) where X is a finite set and ωX : X × X → R is a
weight function. Note that ωX need not satisfy the triangle inequality, any symmetry
condition, or even the requirement that ωX (x, x) = 0 for all x ∈ X . The weights are
even allowed to be negative. The collection of all such networks is denotedN .

When comparing networks, one needs a way to correlate points in one network
with points in the other. To see how this can be done, let (X ,ωX ), (Y ,ωY ) ∈ N . Let
R be any nonempty relation between X and Y , i.e. a nonempty subset of X × Y . The
distortion of the relation R is given by:

dis(R) := max
(x,y),(x ′,y′)∈R

|ωX (x, x ′)− ωY (y, y′)|.

A correspondence between X and Y is a relation R between X and Y such that
πX (R) = X and πY (R) = Y , where πX : X × Y → X and πY : X × Y → Y denote
the natural projections. The collection of all correspondences between X and Y will
be denoted R(X , Y ).
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Following previous work in Carlsson et al. (2014); Chowdhury and Mémoli (2015,
2016) the network distance dN : N ×N → R+ is then defined as:

dN (X , Y ) := 1
2
min
R∈R

dis(R).

The dN as defined above is a pseudometric, and the networks at 0 dN -distance
have been completely characterized (Chowdhury and Mémoli 2015, 2017). Next we
wish to prove the reformulation in Proposition 9. First we define the distortion of
a map between two networks. Here a map between networks (X ,ωX ) and (Y ,ωY )

is simply any function ϕ : X → Y . Given any (X ,ωX ), (Y ,ωY ) ∈ N and a map
ϕ : (X ,ωX ) → (Y ,ωY ), the distortion of ϕ is defined as:

dis(ϕ) := max
x,x ′∈X

|ωX (x, x ′)− ωY (ϕ(x),ϕ(x ′))|.

Next, given maps ϕ : (X ,ωX ) → (Y ,ωY ) and ψ : (Y ,ωY ) → (X ,ωX ), we define
two co-distortion terms:

CX ,Y (ϕ,ψ) := max
(x,y)∈X×Y

|ωX (x,ψ(y))− ωY (ϕ(x), y)|,

CY ,X (ψ,ϕ) := max
(y,x)∈Y×X

|ωY (y,ϕ(x))− ωX (ψ(y), x)|.

Proposition 9 Let (X ,ωX ), (Y ,ωY ) ∈ N . Then,

dN (X , Y ) = 1
2 min{max(dis(ϕ), dis(ψ),CX ,Y (ϕ,ψ),

CY ,X (ψ,ϕ)) : ϕ : X → Y ,ψ : Y → X any maps}.

Remark 10 Proposition 9 is analogous to a result of Kalton and Ostrovskii (1999, The-
orem 2.1) where—instead of dN—one has the Gromov–Hausdorff distance between
metric spaces. We remark that when restricted to the special case of networks that
are also metric spaces, the network distance dN agrees with the Gromov–Hausdorff
distance. Details on the Gromov–Hausdorff distance can be found in Burago et al.
(2001).

An important remark is that in the Kalton–Ostrovskii formulation, there is only
one co-distortion term. When Proposition 9 is applied to metric spaces, the two
co-distortion terms become equal by symmetry, and thus theKalton–Ostrovskii formu-
lation is recovered. But a priori, the lack of symmetry in the network setting requires
us to consider both terms.

Remark 11 In the following sections, we propose methods for computing persistent
homology of networks, and prove that they are stable via Lemma 8. Note that similar
results, valid in the setting of metric spaces, have appeared in Chazal et al. (2009)
and Chazal et al. (2014).Whereas the proofs in Chazal et al. (2014) invoke an auxiliary
construction of multivalued maps arising from correspondences, our proofs simply
use the maps ϕ,ψ arising directly from the reformulation of dN (Proposition 9), thus
streamlining the treatment.
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When studying the effect of asymmetry on persistent homology, it will be useful to
consider the network transformations that we define next.

Definition 1 (Symmetrization and transposition) Define themax-symmetrizationmap
s : N → N by (X ,ωX ) ,→ (X , ω̂X ), where for any network (X ,ωX ), we define
ω̂X : X × X → R as follows:

ω̂X (x, x ′) := max(ωX (x, x ′),ωX (x ′, x)), for x, x ′ ∈ X .

Also define the transposition map t : N → N by (X ,ωX ) ,→ (X ,ω⊤
X ), where for

any (X ,ωX ) ∈ N , we define ω⊤
X (x, x

′) := ωX (x ′, x) for x, x ′ ∈ X . For convenience,
we denote X⊤ := t(X) for any network X .

We are now ready to formulate our twomethods for computing persistent homology
of networks. The Rips filtration is the “workhorse” of persistent homology of metric
spaces so it is natural to consider its generalization to general asymmetric networks.

4 The Rips filtration of a network

Recall that for a metric space (X , dX ), the Rips complex is defined for each δ ≥ 0 as
follows:

Rδ
X := {σ ∈ pow(X) : diam(σ ) ≤ δ} , where diam(σ ) := max

x,x ′∈σ
dX (x, x ′).

Following this definition, we define the Rips complex for a network (X ,ωX ) as
follows:

Rδ
X := {σ ∈ pow(X) : max

x,x ′∈σ
ωX (x, x ′) ≤ δ}.

To any network (X ,ωX ), we may associate the Rips filtration {Rδ
X ↪→ Rδ′

X }δ≤δ′ .
We denote the k-dimensional persistence vector space associated to this filtration by
HR

k (X), and the corresponding persistence diagram by DgmR
k (X). The Rips filtration

is stable to small perturbations of the input data:

Proposition 12 Let (X ,ωX ), (Y ,ωY ) ∈ N . Then dB(DgmR
k (X),DgmR

k (Y )) ≤
2dN (X ,Y ).

We omit the proof because it is similar to that of Proposition 15, which we will prove
in detail.

Remark 13 The preceding proposition serves a dual purpose: (1) it shows that the Rips
persistence diagram is robust to noise in input data, and (2) it shows that instead of
computing the network distance between two networks, one can compute the bot-
tleneck distance between their Rips persistence diagrams as a suitable proxy. The
advantage to computing bottleneck distance is that it can be done in polynomial time
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(see Efrat et al. 2001), whereas computing dN is NP-hard in general. This follows
from the fact that the problem of computing dN includes the problem of computing
the Gromov–Hausdorff distance between finite metric spaces, which is an NP-hard
problem (Schmiedl 2015). We remark that the idea of computing Rips persistence
diagrams to compare finite metric spaces first appeared in Chazal et al. (2009), and
moreover, that Proposition 12 is an extension of Theorem 3.1 in Chazal et al. (2009).

The Rips filtration in the setting of symmetric networks has been used in Horak
et al. (2009), Carstens and Horadam (2013), Giusti et al. (2015) and Petri et al. (2013),
albeit without addressing stability results. To our knowledge, Proposition 12 is the
first quantitative result justifying the constructions in these prior works.

Remark 14 (Rips is insensitive to asymmetry) A critical weakness of the Rips complex
construction is that it is not sensitive to asymmetry. To see this, recall the symmetriza-
tion map defined in Definition 1, and let (X ,ωX ) ∈ N . Now for any σ ∈ pow(X),
we have maxx,x ′∈σ ωX (x, x ′) = maxx,x ′∈σ ω̂X (x, x ′). It follows that for each δ ≥ 0,
the Rips complexes of (X ,ωX ) and (X , ω̂X ) = s(X ,ωX ) are equal, i.e. R = R ◦ s.
Thus the Rips persistence diagrams of the original and max-symmetrized networks
are equal.

5 The Dowker filtration of a network

Given (X ,ωX ) ∈ N , and for any δ ∈ R, consider the following relation on X :

Rδ,X :=
{
(x, x ′) : ωX (x, x ′) ≤ δ

}
. (3)

Then Rδ,X ⊆ X×X , and RδF ,X = X×X for some sufficiently large δF . Furthermore,
for any δ′ ≥ δ, we have Rδ,X ⊆ Rδ′,X . Using Rδ,X , we build a simplicial complexDsi

δ
as follows:

Dsi
δ,X :=

{
σ = [x0, . . . , xn] : there exists x ′ ∈ X such that (xi , x ′) ∈ Rδ,X for each xi

}
. (4)

If σ ∈ Dsi
δ,X , it is clear that any face of σ also belongs to Dsi

δ,X . We call Dsi
δ,X the

Dowker δ-sink simplicial complex associated to X , and refer to x ′ as a δ-sink for σ

(where σ and x ′ should be clear from context).
Since Rδ,X is an increasing sequence of sets, it follows that Dsi

δ,X is an increasing
sequence of simplicial complexes. In particular, for δ′ ≥ δ, there is a natural inclusion
map Dsi

δ,X ↪→ Dsi
δ′,X . We write Dsi

X to denote the filtration {Dsi
δ,X ↪→ Dsi

δ′,X }δ≤δ′

associated to X . We call this the Dowker sink filtration on X . We will denote the
k-dimensional persistence diagram arising from this filtration by Dgmsi

k (X).
We define a dual construction as follows:

Dso
δ,X :=

{
σ = [x0, . . . , xn] : there exists x ′ ∈ X such that (x ′, xi ) ∈ Rδ,X for each xi

}
.

(5)
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Fig. 2 Computing the Dowker sink and source complexes of a network (X ,ωX ). Observe that the sink and
source complexes are different in the range 1 ≤ δ < 2

WecallDso
δ,X theDowker δ-source simplicial complex associated to X . Thefiltration

{Dso
δ,X ↪→ Dso

δ′,X }δ≤δ′ associated to X is called the Dowker source filtration, denoted
Dso

X . We denote the k-dimensional persistence diagram arising from this filtration by
Dgmso

k (X). Notice that any construction usingDsi
δ,X can also be repeated usingDso

δ,X ,
so we focus on the case of the sink complexes and restate results in terms of source
complexes where necessary. In particular, we will prove in Sect. 5.1 that

Dgmsi
k (X) = Dgmso

k (X) for any k ∈ Z+,

so it makes sense to talk about “the” Dowker diagram associated to X .
The sink and source filtrations are not equal in general; this is illustrated in Fig. 2.
As in the case of the Rips filtration, both the Dowker sink and source filtrations are

stable.

Proposition 15 Let (X ,ωX ), (Y ,ωY ) ∈ N . Then dB(Dgm•
k (X),Dgm

•
k(Y )) ≤

2dN (X ,Y ). Here Dgm• refers to either of Dgmsi and Dgmso.

Proof of Proposition 15 Both cases are similar, so we just prove the result for Dgmsi.
Let η = 2dN (X , Y ). Then by Proposition 9, there exist maps ϕ : X → Y ,ψ : Y → X
such that

max(dis(ϕ), dis(ψ),CX ,Y (ϕ,ψ),CY ,X (ψ,ϕ)) ≤ η.

First we check that ϕ,ψ induce simplicial maps ϕδ : Dsi
δ,X → Dsi

δ+η,Y and ψδ :
Dsi

δ,Y → Dsi
δ+η,Y for each δ ∈ R.

Let δ′ ≥ δ ∈ R. Let σ = [x0, . . . , xn] ∈ Dsi
δ,X . Then there exists x ′ ∈ X such that

ωX (xi , x ′) ≤ δ for each 0 ≤ i ≤ n. Fix such an x ′. Since dis(ϕ) ≤ η, we have the
following for each i :

|ωX (xi , x ′)− ωY (ϕ(xi ),ϕ(x ′))| ≤ η.

So ωY (ϕ(xi ),ϕ(x ′)) ≤ ωX (xi , x ′) + η ≤ δ + η for each 0 ≤ i ≤ n. Thus
ϕδ(σ ) := {ϕ(x0), . . . ,ϕ(xn)} is a simplex in Dsi

δ+η,Y . Thus the map on simplices
ϕδ induced by ϕ is simplicial for each δ ∈ R.
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Similarly we check that the map ψδ on simplices induced by ψ is simplicial. Now
to prove the result, it will suffice to check the contiguity conditions in the statement
of Lemma 8. Consider the following diagram:

Dsi
δ,X Dsi

δ′,X

Dsi
δ+η,Y Dsi

δ′+η,Y

sδ,δ′

ϕδ

ϕδ′

tδ+η,δ′+η

Here sδ,δ′ and tδ+η,δ′+η are the inclusion maps. We claim that tδ+η,δ′+η ◦ ϕδ and
ϕδ′ ◦ sδ,δ′ are contiguous simplicial maps. To see this, let σ ∈ Dsi

δ,X . Since sδ,δ′ is
just the inclusion, it follows that tδ+η,δ′+η(ϕδ(σ ))∪ ϕδ′(sδ,δ′(σ )) = ϕδ(σ ), which is a
simplex in Dsi

δ+η,Y because ϕδ is simplicial, and hence a simplex in Dsi
δ′+η,Y because

the inclusion tδ+η,δ′+η is simplicial. Thus tδ+η,δ′+η ◦ ϕδ and ϕδ′ ◦ sδ,δ′ are contiguous,
and their induced linear maps for homology are equal. By a similar argument, we
verify that sδ+η,δ′+η ◦ ψδ and ψδ′ ◦ tδ,δ′ are contiguous simplicial maps as well.

Next we check that the maps ψδ+η ◦ϕδ and sδ,δ+2η in the figure below are contigu-
ous.

Dsi
δ,X Dsi

δ+2η,X

Dsi
δ+η,Y

sδ,δ+2η

ϕδ ψδ+η

Let xi ∈ σ . Note that for our fixed σ = [x0, . . . , xn] ∈ Dsi
δ,X and x ′, we have:

|ωX (xi , x ′)− ωX (ψ(ϕ(xi )),ψ(ϕ(x ′)))| ≤ |ωX (xi , x ′)− ωY (ϕ(xi ),ϕ(x ′))|
+ |ωY (ϕ(xi ),ϕ(x ′))
− ωX (ψ(ϕ(xi )),ψ(ϕ(x ′)))|

≤ 2η.

Thus we obtain ωX (ψ(ϕ(xi )),ψ(ϕ(x ′))) ≤ ωX (xi , x ′)+ 2η ≤ δ + 2η.

Since this holds for any xi ∈ σ , it follows thatψδ+η(ϕδ(σ )) ∈ Dsi
δ+2η,X . We further

claim that

τ := σ ∪ ψδ+η(ϕδ(σ )) = {x0, x1, . . . , xn,ψ(ϕ(x0)), . . . ,ψ(ϕ(xn))}

is a simplex in Dsi
δ+2η,X . Let 0 ≤ i ≤ n. It suffices to show that ωX (xi ,ψ(ϕ(x ′)) ≤

δ + 2η.
Notice that from the reformulation of dN (Proposition 9), we have

CX ,Y (ϕ,ψ) = max
(x,y)∈X×Y

|ωX (x,ψ(y))− ωY (ϕ(x), y)| ≤ η.
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Let y = ϕ(x ′). Then |ωX (xi ,ψ(y))− ωY (ϕ(xi ), y)| ≤ η. In particular,

ωX (xi ,ψ(ϕ(x ′))) ≤ ωY (ϕ(xi ),ϕ(x ′))+ η ≤ ωX (xi , x ′)+ 2η ≤ δ + 2η.

Since 0 ≤ i ≤ n were arbitrary, it follows that τ ∈ Dsi
δ+2η,X . Thus ψδ+η ◦ ϕδ and

sδ,δ+2η are contiguous. Similarly, we use the dis(ψ) and CY ,X (ψ,ϕ) terms to verify
that tδ,δ+2η and ϕδ+η ◦ ψδ are contiguous.

The result now follows by an application of Lemma 8. ⊓3

Remark 16 The preceding proposition shows that the Dowker persistence diagram
is robust to noise in input data, and that the bottleneck distance between Dowker
persistence diagrams arising from two networks can be used as a proxy for computing
the actual network distance. Note the analogy with Remark 13.

Both the Dowker and Rips filtrations are valid methods for computing persistent
homology of networks, by virtue of their stability results (Propositions 12 and 15).
However, we present the Dowker filtration as an appropriate method for capturing
directionality information in directed networks. In Sect. 6 we discuss this particular
feature of the Dowker filtration in full detail.

Remark 17 (Symmetric networks) In the setting of symmetric networks, the Dowker
sink and source simplicial filtrations coincide, and so we automatically obtain
Dgmso

k (X) = Dgmsi
k (X) for any k ∈ Z+ and any (X ,ωX ) ∈ N .

Remark 18 (The metric space setting and relation to witness complexes) When
restricted to the setting ofmetric spaces, theDowker complex resembles a construction
called the witness complex (De Silva and Carlsson 2004). In particular, a version of the
Dowker complex for metric spaces, constructed in terms of landmarks and witnesses,
was discussed in Chazal et al. (2014), along with stability results. When restricted to
the special networks that are pseudo-metric spaces, our definitions and results agree
with those presented in Chazal et al. (2014).

5.1 The functorial Dowker theorem and equivalence of diagrams

Let (X ,ωX ) ∈ N , and let δ ∈ Rbe such that Rδ,X is nonempty. By applying Dowker’s
theorem (Theorem 1) to the setting Y = X , we have Hk(D

si
δ,X )

∼= Hk(D
so
δ,X ), for any

k ∈ Z+. We still have this equality in the case where Rδ,X is empty, because then
Dsi

δ,X and Dso
δ,X are both empty. Thus we obtain:

Corollary 19 Let (X ,ωX ) ∈ N , δ ∈ R, and k ∈ Z+. Then,

Hk(D
si
δ,X )

∼= Hk(D
so
δ,X ).

In the persistent setting, Theorem1andCorollary 19 suggest the following question:

Given a network (X ,ωX ) and a fixed dimension k ∈ Z+, are the persistence
diagramsof theDowker sinkand sourcefiltrations of (X ,ωX )necessarily equal?
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In what follows, we provide a positive answer to the question above. Our strategy
is to use the Functorial Dowker Theorem (Theorem 3), for which we will provide
a complete proof below. The Functorial Dowker Theorem implies equality between
sink and source persistence diagrams.

Corollary 20 (Dowker duality) Let (X ,ωX ) ∈ N , and let k ∈ Z+. Then,

Dgmsi
k (X) = Dgmso

k (X).

Thus we may call either of the diagrams above the k-dimensional Dowker diagram of
X, denoted DgmD

k (X).

Before proving the corollary, we state an R-indexed variant of the Persistence
Equivalence Theorem (Edelsbrunner and Harer 2010). This particular version follows
from the isometry theorem (Bauer and Lesnick 2014), andwe refer the reader to Chazal
et al. (2016, Chapter 5) for an expanded presentation of this material.

Theorem 21 (Persistence equivalence theorem) Consider two persistence vector

spaces U = {U δ
µδ,δ′−−→ U δ′}δ≤δ′∈R and V = {V δ

νδ,δ′−−→ V δ′}δ≤δ′∈R with connect-
ing maps fδ : U δ → V δ .

· · · V δ V δ′ V δ′′ · · ·

· · · U δ U δ′ U δ′′ · · ·

fδ fδ′ fδ′′

If the fδ are all isomorphisms and each square in the diagram above commutes,
then:

Dgm(U) = Dgm(V).

Proof of Corollary 20 Let δ ≤ δ′ ∈ R, and consider the relations Rδ,X ⊆ Rδ′,X ⊆
X × X . Suppose first that Rδ,X and Rδ′,X are both nonempty. By applying Theo-
rem 3, we obtain homotopy equivalences between the source and sink complexes that
commute with the canonical inclusions up to homotopy. Passing to the kth homology
level, we obtain persistence vector spaces that satisfy the commutativity properties of
Theorem 21. The result follows from Theorem 21.

In the case where Rδ,X and Rδ′,X are both empty, there is nothing to show because
all the associated complexes are empty. Suppose Rδ,X is empty, and Rδ′,X is nonempty.
Then Dsi

δ,X and Dso
δ,X are empty, so their inclusions intoDsi

δ′,X and Dso
δ′,X induce zero

maps upon passing to homology. Thus the commutativity of Theorem 21 is satisfied,
and the result follows by Theorem 21. ⊓3

Theproof of the Functorial Dowker Theorem It remains to proveTheorem3.Because
the proof involves numerous maps, we will adopt the notational convention of adding
a subscript to a function to denote its codomain—e.g. we will write fB to denote a
function with codomain B.
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First we recall the construction of a combinatorial barycentric subdivision (see
Dowker 1952, §2; Lefschetz 1942, §4.7; Barmak 2011, Appendix A).

Definition 2 (Barycentric subdivisions) For any simplicial complex %, one may con-
struct a new simplicial complex %(1), called the first barycentric subdivision, as
follows:

%(1) :=
{
[σ1, σ2, . . . , σp] : σ1 ⊆ σ2 ⊆ · · · ⊆ σp, each σi ∈ %

}
.

Note that the vertices of %(1) are the simplices of %, and the simplices of %(1) are
nested sequences of simplices of %. Furthermore, note that given any two simplicial
complexes %, ' and a simplicial map f : % → ' , there is a natural simplicial map
f (1) : %(1) → ' (1) defined as:

f (1)([σ1, . . . , σp]) := [ f (σ1), . . . , f (σp)], σ1 ⊆ σ2 ⊆ . . . , σp, each σi ∈ %.

To see that this is simplicial, note that f (σi ) ⊆ f (σ j ) whenever σi ⊆ σ j . As a
special case, observe that any inclusion map ι : % ↪→ ' induces an inclusion map
ι(1) : %(1) ↪→ ' (1).

Given a simplex σ = [x0, . . . , xk] in a simplicial complex %, one defines the
barycenter to be the point B(σ ) := ∑k

i=0
1

k+1 xi ∈ |%|. Then the spaces |%(1)| and
|%| can be identified via a homeomorphism E|%| : |%(1)| → |%| defined on vertices
by E|%|(σ ) := B(σ ) and extended linearly.

Details on the preceding list of definitions can be found in Munkres (1984, §2.14–
15, 2.19), Spanier (1994, §3.3–4), and also Barmak (2011, Appendix A). The next
proposition follows from the discussions in these references, and is a simple restate-
ment of Barmak (2011, Proposition A.1.5). We provide a proof in the appendix for
completeness.

Proposition 22 (Simplicial approximation to E•) Let % be a simplicial complex, and
let 3 : %(1) → % be a simplicial map such that 3(σ ) ∈ σ for each σ ∈ %. Then
|3| ≃ E|%|.

We now introduce some auxiliary constructions dating back to Dowker (1952) that
use the setup stated in Theorem 3. For any nonempty relation R ⊆ X × Y , one may
define (Dowker 1952, §2) an associatedmap3ER : E (1)

R → ER as follows: first define
3ER on vertices of E

(1)
R by3ER (σ ) = sσ , where sσ is the least vertex of σ with respect

to the total order. Next, for any simplex [σ1, . . . , σk] of E (1)
R , where σ1 ⊆ · · · ⊆ σk ,

we have 3ER (σi ) = sσi ∈ σk for all 1 ≤ i ≤ k. Thus [3ER (σ1), . . . ,3ER (σk)] =
[sσ1, sσ2 , . . . , sσk ] is a face ofσk , hence a simplex of%. This defines3ER as a simplicial
map E (1)

R → ER . This argument also shows that 3ER is order-reversing: if σ ⊆ σ ′,
then 3ER (σ ) ≥ 3ER (σ

′).
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Remark 23 Applying Proposition 22 to the setup above, one sees that |3ER | ≃ E|ER |.
After passing to a second barycentric subdivision E (2)

R (obtained by taking a barycen-
tric subdivision of E (1)

R ) and obtaining a map 3E (1)
R

: E (2)
R → E (1)

R , one also has

|3E (1)
R
| ≃ E|E (1)

R |.

One also defines (Dowker 1952, §3) a simplicial map4FR : E (1)
R → FR as follows.

Given a vertex σ = [x0, . . . , xk] ∈ E (1)
R , one defines 4FR (σ ) = yσ , for some yσ ∈ Y

such that (xi , yσ ) ∈ R for each i . To see why this vertex map is simplicial, let σ (1) =
[σ0, . . . , σk] be a simplex in E (1)

R . Let x ∈ σ0. Then, because σ0 ⊆ σ1 ⊆ · · · ⊆ σk , we
automatically have that (x,4FR (σi )) ∈ R, for each i = 0, . . . , k. Thus 4FR (σ

(1)) is
a simplex in FR . This definition involves a choice of yσ when writing 4FR (σ ) = yσ ,
but all the maps resulting from such choices are contiguous (Dowker 1952, §3).

The precedingmap induces a simplicialmap4F (1)
R

: E (2)
R → F (1)

R as follows. Given

a vertex τ (1) = [τ0, . . . , τk] ∈ E (2)
R , i.e. a simplex in E (1)

R , we define 4F (1)
R
(τ (1)) :=

[4FR (τ0), . . . ,4FR (τk)]. Since 4FR is simplicial, this is a simplex in FR , i.e. a vertex
in F (1)

R . Thus we have a vertex map 4F (1)
R

: E (2)
R → F (1)

R . To check that this map is

simplicial, let τ (2) = [τ (1)0 , . . . , τ
(1)
p ] be a simplex in E (2)

R . Then τ
(1)
0 ⊆ τ

(1)
1 ⊆ · · · ⊆

τ
(1)
p , and because 4FR is simplicial, we automatically have

4FR (τ
(1)
0 ) ⊆ 4FR (τ

(1)
1 ) ⊆ · · · ⊆ 4FR (τ

(1)
p ).

Thus 4F (1)
R
(τ (2)) is a simplex in F (1)

R .

Proof of Theorem 3 We write F (2)
R to denote the barycentric subdivision of F (1)

R , and
obtain simplicialmaps3F (1)

R
: F (2)

R → F (1)
R ,3FR : F (1)

R → FR ,4E (1)
R

: F (2)
R → E (1)

R ,

and 4FR : E (1)
R → FR as above. Consider the following diagram:

4
F(1)
R

4ER

F (2)
R

F (1)
R

FR

F (2)
R′

F (1)
R′

FR′

E (2)
R

E (1)
R

ER

E (2)
R′

E (1)
R′

ER′

3
F(1)
R

3FR

3F (1)
R′

3FR′

3
F(1)
R

3FR

4
E(1)
R

4FR

We proceed by claiming contiguity of the following.
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E (2)
R E (1)

R ER

F (1)
R

3
E(1)
R

3ER

4
F(1)
R

4ER

F (2)
R F (1)

R FR

E (1)
R

3
F(1)
R

3FR

4
E(1)
R

4FR

F (2)
R F (1)

R

E (1)
R ER

3
F(1)
R

4ER4
E(1)
R

3ER
E (2)
R E (1)

R

F (1)
R FR

3
E(1)
R

4FR

4
F(1)
R

3FR

⊓3

Claim 1 More specifically:

(1) 3ER ◦ 3E (1)
R

and 4ER ◦ 4F (1)
R

are contiguous.

(2) 3FR ◦ 3F (1)
R

and 4FR ◦ 4E (1)
R

are contiguous.

(3) 4ER ◦ 3F (1)
R

and 3ER ◦ 4E (1)
R

are contiguous.

(4) 4FR ◦ 3E (1)
R

and 3FR ◦ 4F (1)
R

are contiguous.

Items (1) and (3) appear in the proof of Dowker’s theorem (Dowker 1952, Lemmas
5, 6), and it is easy to see that a symmetric argument shows Items (2) and (4). For
completeness, we will verify these items in this paper, but defer this verification to the
end of the proof.

By passing to the geometric realization and applying Proposition 7 and Remark 23,
we obtain the following from Item (3) of Claim 1:

|4ER | ◦ |3F (1)
R
| ≃ |3ER | ◦ |4E (1)

R
|,

|4ER | ◦ E|F (1)
R | ≃ E|ER | ◦ |4E (1)

R
|, (Remark 23)

E−1
|ER | ◦ |4ER | ◦ E|F (1)

R | ≃ |4E (1)
R
|. (E is a homeomorphism, hence invertible)

Replacing this term in the expression for Item (2) of Claim 1, we obtain:

|4FR | ◦ |4E (1)
R
| ≃ |3FR | ◦ |3F (1)

R
| ≃ E|FR | ◦ E|F (1)

R |,

|4FR | ◦ E−1
|ER | ◦ |4ER | ◦ E|F (1)

R | ≃ E|FR | ◦ E|F (1)
R |,

|4FR | ◦ E−1
|ER | ◦ |4ER | ◦ E−1

|FR | ≃ id|FR | .

Similarly, we obtain the following from Item (4) of Claim 1:

|4FR | ◦ |3E (1)
R
| ≃ |3FR | ◦ |4F (1)

R
|, so E−1

|FR | ◦ |4FR | ◦ E|E (1)
R
| ≃ |4F (1)

R
|.

Replacing this term in the expression for Item (1) of Claim 1, we obtain:

|4ER | ◦ |4F (1)
R
| ≃ |3ER | ◦ |3E (1)

R
| ≃ E|ER | ◦ E|E (1)

R |,
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|4ER | ◦ E−1
|FR | ◦ |4FR | ◦ E|E (1)

R
| ≃ E|ER | ◦ E|E (1)

R |

|4ER | ◦ E−1
|FR | ◦ |4FR | ◦ E−1

|ER | ≃ id|ER |

Define #|ER | : |FR | → |ER | by #|ER | := |4ER | ◦ E−1
|FR |. Then #|ER | is a homotopy

equivalence, with inverse given by |4FR | ◦ E−1
|ER |. This shows that |FR | ≃ |ER |, for

any nonempty relation R ⊆ X × Y .
Next we need to show that #|ER | commutes with the canonical inclusion. Consider

the following diagram, where the ι• maps denote the respective canonical inclusions
(cf. Definition 2):

F (1)
R F (1)

R′

FR FR′

ER ER′

ιF(1)

ιF

ιE

3FR 3FR′

4ER
4ER′

Claim 2 ιE ◦ 4ER and 4ER′ ◦ ιF (1) are contiguous.

Claim 3 ιF ◦ 3FR and 3FR′ ◦ ιF (1) are contiguous.

Suppose Claim 3 is true. Then, upon passing to geometric realizations, we have:

|ιF | ◦ E|FR | ≃ |ιF | ◦ |3FR | ≃ |3FR′ | ◦ |ιF (1) | ≃ E|FR′ | ◦ |ιF (1) |,
E−1
|FR′ | ◦ |ιF | ◦ E|FR | ≃ |ιF (1) |.

Suppose also that Claim 2 is true. Then we have:

|4ER′ | ◦ |ιF (1) | ≃ |ιE | ◦ |4ER |,
|4ER′ | ◦ E−1

|FR′ | ◦ |ιF | ◦ E|FR | ≃ |ιE | ◦ |4ER |,
|4ER′ | ◦ E−1

|FR′ | ◦ |ιF | ≃ |ιE | ◦ |4ER | ◦ E−1
|FR |, i.e.

#|ER′ | ◦ |ιF | ≃ |ιE | ◦ #|ER |.

This proves the theorem. It only remains to prove the various claims.

Proof of Claim 1 In proving Claim 1, we supply the proofs of Items (2) and (4). These
arguments are adapted from Dowker (1952, Lemmas 1, 5, and 6), where the proofs of
Items (1) and (3) appeared.

For Item (2), let τ (2) = [τ (1)0 , . . . , τ
(1)
k ] be a simplex in F (2)

R , where τ
(1)
0 ⊆

· · · ⊆ τ
(1)
k is a chain of simplices in F (1)

R . By the order-reversing property of the
map 3F (1)

R
, we have that 3F (1)

R
(τ

(1)
0 ) ⊇ 3F (1)

R
(τ

(1)
i ) for each i = 0, . . . , k. Define
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x := 4ER (3F (1)
R
(τ

(1)
0 )). Then (x, y) ∈ R for each y ∈ 3F (1)

R
(τ

(1)
0 ). But we also

have (x,3FR (3F (1)
R
(τ

(1)
i ))) ∈ R for each i = 0, . . . , k, because 3FR (3F (1)

R
(τ

(1)
i )) ∈

3F (1)
R
(τ

(1)
i ) ⊆ 3FR (τ

(1)
0 ) for each i = 0, . . . , k.

Next let 0 ≤ i ≤ k. For each τ ∈ τ
(1)
i , we have 4ER (τ ) ∈ 4E (1)

R
(τ

(1)
i )

(by the definition of 4E (1)
R
). Because 3F (1)

R
(τ

(1)
0 ) ∈ τ

(1)
0 ⊆ τ

(1)
i , we then have

x = 4ER (3F (1)
R
(τ

(1)
0 )) ∈ 4E (1)

R
(τ

(1)
i ), which is a vertex of E (1)

R or alternatively a sim-

plex of ER . But then, by definition of 4FR , we have that (x,4FR (4E (1)
R
(τ

(1)
i ))) ∈ R.

This holds for each 0 ≤ i ≤ k. Since τ (2) was arbitrary, this shows that 3FR ◦ 3F (1)
R

and 4FR ◦ 4E (1)
R

are contiguous.

For Item (4), let σ (2) = [σ (1)
0 , . . . , σ

(1)
k ] be a simplex in E (2)

R . Let 0 ≤
i ≤ k. Then σ

(1)
0 ⊆ · · · ⊆ σ

(1)
k , and 3E (1)

R
(σ

(1)
i ) ∈ σ

(1)
i ⊆ σ

(1)
k . So

4FR (3E (1)
R
(σ

(1)
i )) ∈ 4F (1)

R
(σ

(1)
k ). On the other hand, we have 4F (1)

R
(σ

(1)
i ) ⊆

4F (1)
R
(σ

(1)
k ). Then 3FR (4F (1)

R
(σ

(1)
i )) ∈ 4F (1)

R
(σ

(1)
i ) ⊆ 4F (1)

R
(σ

(1)
k ). Since i was arbi-

trary, this shows that 4FR ◦3E (1)
R

and 3FR ◦4F (1)
R

both map the vertices of σ (2) to the

simplex 4F (1)
R
(σ

(1)
k ), hence are contiguous. This concludes the proof of the claim. ⊓3

Proof of Claim 2 Let τ (1) = [τ0, τ1, . . . , τk] ∈ F (1)
R , where τ0 ⊆ τ1 ⊆ · · · ⊆ τk is a

chain of simplices in FR . Then ιF (1) (τ (1)) = τ (1), and 4ER′ (τ
(1)) = [xτ0 , . . . , xτk ],

for some choice of xτi terms. Also we have ιE ◦4ER (τ
(1)) = [x ′τ0 , . . . , x ′τk ] for some

other choice of x ′τi terms. For contiguity, we need to show that

[xτ0 , . . . , xτk , x
′
τ0
, . . . , x ′τk ] ∈ ER′ .

But this is easy to see: letting y ∈ τ0, we have
{
(xτ0 , y), . . . , (xτk , y), (x

′
τ0
, y), . . . ,

(x ′τk , y)
}
⊆ R. Since τ (1) was arbitrary, it follows that we have contiguity. ⊓3

Proof of Claim 3 Let τ (1) = [τ0, τ1, . . . , τk] ∈ F (1)
R , where τ0 ⊆ τ1 ⊆ · · · ⊆ τk is a

chain of simplices in FR . Then 3FR (τi ) ∈ τk for each 0 ≤ i ≤ k. Thus ιF ◦3FR (τ
(1))

is a face of τk . Similarly, 3FR′ ◦ ιF (1) (τ (1)) is also a face of τk . Since τ (1) was an

arbitrary simplex of F (1)
R , it follows that ιF ◦ 3FR and 3FR′ ◦ ιF (1) are contiguous. ⊓3

5.2 The equivalence between the finite FDT and the simplicial FNTs

In this section, we present our answer to Question 1. We begin with a weaker formu-
lation of Theorem 3 and some simplicial Functorial Nerve Theorems.

Theorem 24 (The finite FDT) Let X , Y be two totally ordered sets, and without loss of
generality, suppose X is finite. Let R ⊆ R′ ⊆ X × Y be two nonempty relations, and
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let ER, FR, ER′ , FR′ be their associated simplicial complexes (as in Theorem 3). Then
there exist homotopy equivalences #|ER | : |FR | → |ER | and #|ER′ | : |FR′ | → |ER′ |
that commute up to homotopy with the canonical inclusions.

The finite FDT (Theorem 24) is an immediate consequence of the general FDT
(Theorem 3).

Definition 3 LetA = {Ai }i∈I be a family of nonempty sets indexed by I . The nerve of
A is the simplicial complexN (A) := {σ ∈ pow(I ) : σ is finite, nonempty, and ∩i∈σ

Ai ̸= ∅}.
Definition 4 (Covers of simplices and subcomplexes) Let % be a simplicial complex.
Then a collection of subcomplexesA% = {%i }i∈I is said to be a cover of subcomplexes
for % if % = ∪i∈I%i . Furthermore, A% is said to be a cover of simplices if each
%i ∈ A% has the property that %i = pow(V (%i )). In this case, each %i has precisely
one top-dimensional simplex, consisting of the vertex set V (%i ).

We present two simplicial formulations of the Functorial Nerve Theorem that turn
out to be equivalent; the statements differ in that one is about covers of simplices and
the other is about covers of subcomplexes.

Theorem 25 (Functorial nerve I) Let % ⊆ %′ be two simplicial complexes, and let
A% = {%i }i∈I , A%′ = {%′

i }i∈I ′ be finite covers of simplices for % and %′ such that
I ⊆ I ′ and %i ⊆ %′

i for each i ∈ I . In particular, card(I ′) < ∞. Suppose that for
each finite subset σ ⊆ I ′, the intersection ∩i∈σ %′

i is either empty or contractible (and
likewise for ∩i∈σ %i ). Then |%| ≃ |N (A%)| and |%′| ≃ |N (A%′)|, via maps that
commute up to homotopy with the canonical inclusions.

Theorem 26 (Functorial nerve II) The statement of Theorem 25 holds even ifA% and
A%′ are covers of subcomplexes. Explicitly, the statement is as follows. Let% ⊆ %′ be
two simplicial complexes, and let A% = {%i }i∈I , A%′ = {%′

i }i∈I ′ be finite covers of
subcomplexes for% and%′ such that I ⊆ I ′ and%i ⊆ %′

i for each i ∈ I . In particular,
card(I ′) < ∞. Suppose that for each finite subset σ ⊆ I ′, the intersection ∩i∈σ %′

i
is either empty or contractible (and likewise for ∩i∈σ %i ). Then |%| ≃ |N (A%)|
and |%′| ≃ |N (A%′)|, via maps that commute up to homotopy with the canonical
inclusions.

The following result summarizes our answer to Question 1.

Theorem 27 (Equivalence) The finite FDT, the FNT I, and the FNT II are all equiva-
lent. Moreover, all of these results are implied by the FDT, as below:

Theorem 3 Theorem 24

Theorem 25

Theorem 26

We present the proof of Theorem 27 over the course of the next few subsections.

Remark 28 By virtue of Theorem 27, we will write simplicial FNT to mean either of
the FNT I or FNT II.
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Theorem 24 implies Theorem 25

Proof of Theorem 25 Let V , V ′ denote the vertex sets of%,%′, respectively.We define
the relations R ⊆ V × I and R′ ⊆ V ′ × I ′ as follows: (v, i) ∈ R ⇐⇒ v ∈ %i
and (v′, i ′) ∈ R′ ⇐⇒ v′ ∈ %′

i . Then R ⊆ R′, the set I ′ is finite by assumption,
and so we are in the setting of the finite FDT (Theorem 24) (perhaps invoking the
Axiom of Choice to obtain the total order on V ′). It suffices to show that ER = %,
ER′ = %′, FR = N (A%), and FR′ = N (A%′), where ER, ER′ , FR, FR′ are as defined
in Theorem 3.

First we claim the ER = %. By the definitions of R and ER , we have ER = {σ ⊆
V : ∃i ∈ I , (v, i) ∈ R ∀ v ∈ σ } = {σ ⊆ V : ∃i ∈ I , v ∈ %i ∀ v ∈ σ }.
Let σ ∈ ER , and let i ∈ I be such that v ∈ %i for all v ∈ σ . Then σ ⊆ V (%i ),
and since %i = pow(V (%i )) by the assumption about covers of simplices, we have
σ ∈ %i ⊆ %. Thus ER ⊆ %. Conversely, let σ ∈ %. Then σ ∈ %i for some i . Thus
for all v ∈ σ , we have (v, i) ∈ R. It follows that σ ∈ ER . This shows ER = %. The
proof that ER′ = %′ is analogous.

Next we claim that FR = N (A%). By the definition of FR , we have FR = {τ ⊆
I : ∃v ∈ V , (v, i) ∈ R ∀ i ∈ τ }. Let τ ∈ FR , and let v ∈ V be such that (v, i) ∈ R
for each i ∈ τ . Then ∩i∈τ%i ̸= ∅, and so τ ∈ N (A%). Conversely, let τ ∈ N (A%).
Then ∩i∈τ%i ̸= ∅, so there exists v ∈ V such that v ∈ %i for each i ∈ τ . Thus
σ ∈ FR . This shows FR = N (A%). The case for R′ is analogous.

An application of Theorem 24 now completes the proof. ⊓3

Theorem 26 implies Theorem 24

Proof Let X and Y be two sets, and suppose X is finite. Let R ⊆ R′ ⊆ X × Y
be two relations. Consider the simplicial complexes ER, FR, ER′ , FR′ as defined in
Theorem 3. Let VR := V (ER). For each x ∈ VR , define Ax := {τ ∈ FR : (x, y) ∈
R for all y ∈ τ }. Then Ax is a subcomplex of FR . Furthermore, ∪x∈VR Ax = FR . To
see this, let τ ∈ FR . Then there exists x ∈ X such that (x, y) ∈ R for all y ∈ τ , and
so τ ∈ Ax .

Let A := {Ax : x ∈ VR}. We have seen that A is a cover of subcomplexes for FR .
It is finite because the indexing set VR is a subset of X , which is finite by assumption.
Next we claim that N (A) = ER . Let σ ∈ ER . Then there exists y ∈ Y such that
(x, y) ∈ R for all x ∈ σ . Thus ∩x∈σ Ax ̸= ∅, and so σ ∈ N (A). Conversely, let
σ ∈ N (A). Then ∩x∈σ Ax ̸= ∅, and so there exists y ∈ Y such that (x, y) ∈ R for
all x ∈ σ . Thus σ ∈ ER .

Next we check that nonempty finite intersections of elements inA are contractible.
Let σ ∈ N (A) = ER . Let Vσ := ∩x∈σV (Ax ) ⊆ V (FR). We claim that ∩x∈σ Ax =
pow(Vσ ), i.e. that the intersection is a full simplex in FR , hence contractible. The
inclusion ∩x∈σ Ax ⊆ pow(Vσ ) is clear, so we show the reverse inclusion. Let τ ∈
pow(Vσ ), and let y ∈ τ . Then y ∈ ∩x∈σ Ax , so (x, y) ∈ R for each x ∈ σ . This holds
for each y ∈ τ , so it follows that τ ∈ ∩x∈σ Ax . Thus ∩x∈σ Ax = pow(Vσ ). We remark
that this also shows that A is a cover of simplices for FR .
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Now for each x ∈ V (ER′), define A′
x := {τ ∈ FR′ : (x, y) ∈ R′ for all y ∈ τ }.

Also define A′ := {A′
x : x ∈ V (ER′)}. The same argument shows that A′ is a finite

cover of subcomplexes (in particular, a cover of simplices) for FR′ with all finite
intersections either empty or contractible, and that ER′ = N (A′). An application of
Theorem 26 now shows that |ER | ≃ |FR | and |ER′ | ≃ |FR′ |, via maps that commute
up to homotopy with the inclusions |ER | ↪→ |ER′ | and |FR | ↪→ |FR′ |. ⊓3

Theorem 25 implies Theorem 26

We lead with some remarks about the ideas involved in this proof. Theorem 26 is
a functorial statement in the sense that it is about an arbitrary inclusion % ⊆ %′.
Restricting the statement to just % would lead to a non-functorial statement. A proof
of this non-functorial statement, via a non-functorial analogue of Theorem 25, can be
obtained using techniques presented in Björner et al. (1985) (see also Kozlov 2007,
Theorem 15.24). We strengthen these techniques to our functorial setting and thus
obtain a proof of Theorem 26 via Theorem 25.

We first present a lemma related to barycentric subdivisions and several lemmas
about gluings and homotopy equivalences. These will be used in proving Theorem 26.

Definition 5 (Induced subcomplex) Let % be a simplicial complex, and let 5 be a
subcomplex. Then 5 is an induced subcomplex if 5 = % ∩ pow(V (5)).

Lemma 29 Let % be a simplicial complex, and let 5 be a subcomplex. Then 5(1) is
an induced subcomplex of %(1), i.e. 5(1) = %(1) ∩ pow(V (5(1))).

Proof Let σ be a simplex of 5(1). Then σ belongs to %(1), and also to the full
simplex pow(V (5(1))). Thus 5(1) ⊆ %(1) ∩ pow(V (5(1))). Conversely, let σ ∈
%(1) ∩ pow(V (5(1))). Since σ ∈ %(1), we can write σ = [τ0, . . . , τk], where
τ0 ⊆ · · · ⊆ τk . Since σ ∈ pow(V (5(1))) and the vertices of 5(1) are simplices
of 5, we also know that each τi is a simplex of 5. Thus σ ∈ 5(1). The equality
follows. ⊓3

Lemma 30 (Carrier Lemma, Björner et al. 1985 §4) Let X be a topological space, and
let % be a simplicial complex. Also let f , g : X → |%| be any two continuous maps
such that f (x), g(x) belong to the same simplex of |%|, for any x ∈ X. Then f ≃ g.

Lemma 31 (Gluing Lemma, see Lemmas 4.2, 4.7, 4.9, Björner et al. 1985) Let % be a
simplicial complex, and let U ⊆ V (%). Suppose |% ∩ pow(U )| is contractible. Then
there exists a homotopy equivalence ϕ : |% ∪ pow(U )| → |%|.

The Gluing and Carrier Lemmas presented above are classical. We provide full
details for the Gluing lemma inside the proof of the following functorial generalization
of Lemma 31.

Lemma 32 (Functorial Gluing Lemma) Let% ⊆ %′ be two simplicial complexes. Also
let U ⊆ V (%) and U ′ ⊆ V (%′) be such that U ⊆ U ′. Suppose |% ∩ pow(U )| and
|%′ ∩ pow(U ′)| are contractible. Then,
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(1) There exists a homotopy equivalence ϕ : |% ∪ pow(U )| → |%| such that ϕ(x)
and id|%∪pow(U )|(x) belong to the same simplex of |% ∪ pow(U )| for each x ∈
|% ∪ pow(U )|. Furthermore, the homotopy inverse is given by the inclusion
ι : |%| ↪→ |% ∪ pow(U )|.

(2) Given a homotopy equivalence ϕ : |% ∪ pow(U )| → |%| as above, there exists a
homotopy equivalence ϕ′ : |%′ ∪ pow(U ′)| → |%′| such that ϕ′||%∪pow(U )| = ϕ,
and ϕ′(x) and id|%′∪pow(U ′)|(x) belong to the same simplex of |%′ ∪ pow(U ′)|
for each x ∈ |%′ ∪ pow(U ′)|. Furthermore, the homotopy inverse is given by the
inclusion ι′ : |%′| ↪→ |%′ ∪ pow(U ′)|.

Proof of Lemma 32 The proof uses this fact: any continuousmap of an n-sphere Sn into
a contractible space Y can be continuously extended to a mapping of the (n+ 1)-disk
Dn+1 into Y , whereDn+1 has Sn as its boundary (Spanier 1994, p. 27). First we define
ϕ. On |%|, define ϕ to be the identity. Next let σ be aminimal simplex in | pow(U )\%|.
By minimality, the boundary of σ (denoted Bd(σ )) belongs to |% ∩ pow(U )|, and |%|
in particular. Thus ϕ is defined on Bd(σ ), which is an n-sphere for some n ≥ 0.
Furthermore, ϕ maps Bd(σ ) into the contractible space |% ∩ pow(U )|. Then we use
the aforementioned fact to extend ϕ continuously to all of σ so that ϕ maps σ into
|%∩pow(U )|. Furthermore, both id|%∪pow(U )|(σ ) = σ and ϕ(σ ) belong to the simplex
| pow(U )|. By iterating this procedure, we obtain a retraction ϕ : |% ∪ pow(U )| →
|%| such that ϕ(x) and x belong to the same simplex in |% ∪ pow(U )|, for each
x ∈ |% ∪ pow(U )|. Thus ϕ is homotopic to id|%∪pow(U )| by Lemma 30. Thus we have
a homotopy equivalence:

id|%| = ϕ ◦ ι, ι ◦ ϕ ≃ id|%∪pow(U )| . (here ι := ι|%|↪→|%∪pow(U )|)

For the second part of the proof, suppose that a homotopy equivalence ϕ : |% ∪
pow(U )| → |%| as above is provided. We need to extend ϕ to obtain ϕ′. Define ϕ′ to
be equal to ϕ on |%∪pow(U )|, and equal to the identity on G := |%′|\|%∪pow(U )|.
Let σ be a minimal simplex in | pow(U ′)|\G. Then by minimality, Bd(σ ) belongs to
|%′ ∩ pow(U ′)|. As before, we have ϕ′ mapping Bd(σ ) into the contractible space
|%′∩pow(U ′)|, andwe extendϕ′ continuously to amap of σ into |%′∩pow(U ′)|. Once
again, id|%′∪pow(U ′)|(x) andϕ′(x) belong to the same simplex | pow(U ′)|, for all x ∈ σ .
Iterating this procedure gives a continuous map ϕ′ : |%′ ∪pow(U ′)| → |%′|. This map
is not necessarily a retraction, because theremay be a simplex σ ∈ |%∪pow(U )|∩|%′|
on which ϕ′ is not the identity. However, it still holds that ϕ′ is continuous, and that
x,ϕ′(x) getmapped to the same simplex for each x ∈ |%′∪pow(U ′)|. Thus Lemma 30
still applies to show that ϕ′ is homotopic to id|%′∪pow(U ′)|.

We write ι′ to denote the inclusion ι′ : |%′| ↪→ |%′ ∪ pow(U ′)|. By the preceding
work, we have ι′ ◦ ϕ′ ≃ id|%′∪pow(U ′)|. Next let x ∈ |%′|. Then either x ∈ |%′|∩ |% ∪
pow(U )|, or x ∈ G. In the first case, we know that ϕ′(x) = ϕ(x) and id|%′|(x) =
id|%∪pow(U )|(x) belong to the same simplex of |% ∪ pow(U )| by the assumption on
ϕ. In the second case, we know that ϕ′(x) = x = id|%′|(x). Thus for any x ∈ |%′|,
we know that ϕ′(x) and id|%′|(x) belong to the same simplex in |%′ ∪ pow(U ′)|. By
Lemma 30, we then have ϕ′||%′| ≃ id|%′|. Thus ϕ′ ◦ ι′ ≃ id|%′|. This shows that ϕ′ is
the necessary homotopy equivalence. ⊓3
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Now we present the proof of Theorem 26.
Notation Let I be an ordered set. For any subset J ⊆ I , we write (J ) to denote the
sequence ( j1, j2, j3, . . .), where the ordering is inherited from the ordering on I .

Proof of Theorem 26 The first step is to functorially deform A% and A%′ into covers
of simplices while still preserving all associated homotopy types. Then we will be
able to apply Theorem 25. We can assume by Lemma 29 that each subcomplex %i is
induced, and likewise for each%′

i . We start by fixing an enumeration I ′ = {l1, l2, . . .}.
Thus I ′ becomes an ordered set.

Passing to covers of simplices We now define some inductive constructions. In what
follows, we will define complexes denoted %•,%′• obtained by “filling in” % and %′

while preserving homotopy equivalence, as well as covers of these larger complexes
denoted %⋆,•,%′

⋆,•. First define:

%(l1) :=
{

% ∪ pow(V (%l1)) : if l1 ∈ I
% : otherwise.

%′(l1) := %′ ∪ pow(V (%′
l1)).

Next, for all i ∈ I , define

%i,(l1) :=
{

%i ∪ pow(V (%i ) ∩ V (%l1)) : if l1 ∈ I
%i : otherwise.

And for all i ∈ I ′, define

%′
i,(l1) := %′

i ∪ pow(V (%′
i ) ∩ V (%′

l1)).

Now by induction, suppose %(l1,...,ln) and %i,(l1,...,ln) are defined for all i ∈ I . Also
suppose %′(l1,...,ln) and %′

i,(l1,...,ln)
are defined for all i ∈ I ′. Then we define:

%(l1,...,ln ,ln+1) :=
{

%(l1,...,ln) ∪ pow(V (%ln+1,(l1,...,ln))) : if ln+1 ∈ I
%(l1,...,ln) : otherwise.

%′(l1,...,ln ,ln+1) := %′(l1,...,ln) ∪ pow(V (%′
ln+1,(l1,...,ln))).

For all i ∈ I , we have

%i,(l1,l2,...,ln+1)

:=
{

%i,(l1,l2,...,ln) ∪ pow(V (%i,(l1,l2,...,ln)) ∩ V (%ln+1,(l1,l2,...,ln))) : if ln+1 ∈ I
%i,(l1,l2,...,ln) : otherwise.

And for all i ∈ I ′, we have

%′
i,(l1,l2,...,ln+1)

:= %′
i,(l1,l2,...,ln) ∪ pow(V (%′

i,(l1,l2,...,ln)) ∩ V (%′
ln+1,(l1,l2,...,ln))).
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Finally, for any n ≤ card(I ′), we define A%,(l1,...,ln) := {%i,(l1,...,ln) : i ∈ I } and
A%′,(l1,...,ln) := {%′

i,(l1,...,ln)
: i ∈ I ′}.Wewill show that these are covers of%(l1,l2,...,ln)

and %′(l1,l2,...,ln), respectively.
The next step is to prove by induction that for any n ≤ card(I ′), we have

|%| ≃ |%(l1,l2,...,ln)| and |%′| ≃ |%′(l1,l2,...,ln)|, that N (A%) = N (A%,(l1,l2,...,ln))

and N (A%′) = N (A%′,(l1,l2,...,ln)), and that nonempty finite intersections of the new
covers A%,(l1,l2,...,ln),A%′,(l1,l2,...,ln) remain contractible. For the base case n = 0, we
have % = %(), %′ = %′(). Thus the base case is true by assumption. We present the
inductive step next. ⊓3

Claim 4 For this claim, let • denote l1, . . . , ln, where 0 < n < card(I ′). Define
l := ln+1. Suppose the following is true:

(1) The collections A%,(•) and A%′,(•) are covers of %(•) and %′(•).
(2) The nerves of the coverings are unchanged: N (A%) = N (A%,(•)) and

N (A%′) = N (A%′,(•)).
(3) Each of the subcomplexes %i,(•), i ∈ I , and %′

j,(•), j ∈ I ′ is induced in %(•) and
%′(•), respectively.

(4) Let σ ⊆ I . If ∩i∈σ %i,(•) is nonempty, then it is contractible. Similarly, let τ ⊆ I ′.
If ∩i∈τ%

′
i,(•) is nonempty, then it is contractible.

(5) We have homotopy equivalences |%| ≃ |%(•)| and |%′| ≃ |%′(•)| via maps that
commute with the canonical inclusions.

Then the preceding statements are true for %(•,l), %′(•,l), A%,(•,l), and A%′,(•,l) as
well.

Proof For the first claim, we have %(•,l) = %(•) ∪ pow(V (%l,(•))) ⊆ ∪i∈I%i,(•,l).
For the inclusion, we used the inductive assumption that%(•) = ∪i∈I%i,(•). Similarly,
%′(•,l) ⊆ ∪i∈I ′%′

i,(•,l).
For the second claim, let i ∈ I . Then V (%i,(l1)) = V (%i ), and in particular, we have

V (%i,(•,l)) = V (%i,(•)) = V (%i ). Next observe that for any σ ⊆ I , the intersection

∩i∈σ %i ̸= ∅ ⇐⇒ ∩i∈σV (%i ) ̸= ∅ ⇐⇒ ∩i∈σV (%i,(•,l))
̸= ∅ ⇐⇒ ∩i∈σ %i,(•,l) ̸= ∅.

Thus N (A%) = N (A%,(•)) = N (A%,(•,l)), and similarly N (A%′) = N (A%′,(•)) =
N (A%′,(•,l)).

For the third claim, again let i ∈ I . If l /∈ I , then %i,(•,l) = %i,(•), so we are done
by the inductive assumption. Suppose l ∈ I . Since %i,(•) is induced by the inductive
assumption, we have:

%i,(•,l) = %i,(•) ∪ (pow(V (%i,(•)) ∩ V (%l,(•))))

= (%(•) ∩ pow(V (%i,(•)))) ∪ (pow(V (%i,(•))) ∩ pow(V (%l,(•))))

= (%(•) ∪ pow(V (%l,(•)))) ∩ pow(V (%i,(•)))

= %(•,l) ∩ pow(V (%i,(•))) = %(l) ∩ pow(V (%i,(•,l))).
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Thus %i,(•,l) is induced. The same argument holds for the I ′ case.
For the fourth claim, let σ ⊆ I , and suppose ∩i∈σ %i,(•,l) is nonempty. By the

previous claim, each %i,(•,l) is induced. Thus we write:

∩i∈σ %i,(•,l) = %(•,l) ∩ pow(∩i∈σV (%i,(•,l)))

= %(•,l) ∩ pow(∩i∈σV (%i,(•)))

= (%(•) ∪ pow(V (%l,(•)))) ∩ pow(∩i∈σV (%i,(•)))

= (∩i∈σ (%
(•) ∩ pow(V (%i,(•)))))

∪ pow(∩i∈σV (%i,(•)) ∩ V (%l,(•)))
= (∩i∈σ %i,(•)) ∪ pow(∩i∈σV (%i,(•)) ∩ V (%l,(•))).

For convenience, define A := (∩i∈σ %i,(•)) and B := pow(∩i∈σV (%i,(•))∩V (%l,(•))).
Then |A| is contractible by inductive assumption, and |B| is a full simplex, hence
contractible. Also, A ∩ B has the form

(∩i∈σ (%
(•) ∩ pow(V (%i,(•))))) ∩ pow(∩i∈σV (%i,(•)) ∩ V (%l,(•)))

= %(•) ∩ pow(∩i∈σV (%i,(•)) ∩ V (%l,(•)))
= ∩i∈σ %i,(•) ∩ %l,(•),

and the latter is contractible by inductive assumption. Thus by Lemma 31, we have
|A ∪ B| contractible. This proves the claim for the case σ ⊆ I . The case τ ⊆ I ′ is
similar.

Now we proceed to the final claim. Since %l,(•) is induced, we have %l,(•) =
%(•) ∩ pow(V (%l,(•))). By the contractibility assumption, we know that |%l,(•)| is
contractible. Also we know that |%′

l,(•)| = |%′(•) ∩ pow(V (%′
l,(•)))| is contractible.

By assumption we also have V (%l,(•)) ⊆ V (%′
l,(•)). Thus by Lemma 32, we obtain

homotopy equivalences 3l : |%(•,l)| → |%(•)| and 3′
l : |%′(•,l)| → |%′(•)| such

that 3′
l extends 3l . Furthermore, the homotopy inverses of 3l and 3′

l are just the
inclusions |%(•)| ↪→ |%(•,l)| and |%′(•)| ↪→ |%′(•,l)|.

Now let ι : |%(•)| → |%′(•)| and ιl : |%(•,l)| → |%′(•,l)| denote the canonical
inclusions. We wish to show the equality 3′

l ◦ ιl = ι ◦ 3l . Let x ∈ |%(•,l)|. Because
3′

l extends 3l (this is why we needed the functorial gluing lemma), we have

3′
l(ιl(x))) = 3′

l(x) = 3l(x) = ι(3l(x)).

Since x ∈ |%(•,l)| was arbitrary, the equality follows immediately. By the inductive
assumption,we already have homotopy equivalences |%(•)| → |%| and |%′(•)| → |%′|
that commute with the canonical inclusions. Composing these maps with 3l and 3′

l
completes the proof of the claim. ⊓3

By the preceding work, we replace the subcomplexes%l ,%
′
l by full simplices of the

form%l,(•,l),%′
l,(•,l). In this process, the nerves remain unchanged and the complexes

%,%′ are replaced by homotopy equivalent complexes %(•,l),%′(•,l). Furthermore,
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this process is functorial—the homotopy equivalences commute with the canonical
inclusions % ↪→ %(•,l) and %′ ↪→ %′(•,l).

Repeating the inductive process in Claim 4 for all the finitely many l ∈ I yields
a simplicial complex %(I ) along with a cover of simplices A%,(I ). We also perform
the same procedure for all l ∈ I ′\I (this does not affect %(I )) to obtain a simplicial
complex %′(I ′) along with a cover of simplices A%′,(I ′). Furthermore, %(I ) and %′(I )

are related to % and %′ by a finite sequence of homotopy equivalences that commute
with the canonical inclusions. Also, we have N (A%) = N (A%,(I )) and N (A%′) =
N (A%′,(I ′)). Thus we obtain the following picture:

|%′(I ′)|· · ·|%′(l1)||%′| |N (A%′)||N (A%′,(I ′))|

|%(I )|· · ·|%(l1)||%| |N (A%)||N (A%,(I ))|≃

≃≃ ≃

≃ ≃

ι(l1)ι ιNιN ,(I )ι(I )

≃

≃

By applying Theorem 25 to the block consisting of |%(I )|, |%′(I ′)|, |N (A%,I )| and
|N (A%′,I ′)|, we obtain a square that commutes up to homotopy. Then by composing
the homotopy equivalences constructed above, we obtain a square consisting of |%|,
|%′|, |N (A%)|, and |N (A%′)| that commutes up to homotopy. Thus we obtain homo-
topy equivalences |%| ≃ |N (A%)| and |%′| ≃ |N (A%′)| via maps that commute up
to homotopy with the canonical inclusions. ⊓3

6 Dowker persistence diagrams and asymmetry

From the very definition of the Rips complex at any given resolution, one can see
that the Rips complex is blind to asymmetry in the input data (Remark 14). In this
section, we argue that either of the Dowker source and sink complexes is sensitive
to asymmetry. Thus when analyzing datasets containing asymmetric information, one
may wish to use the Dowker filtration instead of the Rips filtration. In particular,
this property suggests that the Dowker persistence diagram is a stronger invariant for
directed networks than the Rips persistence diagram.

In this section, we consider a family of examples, called cycle networks, for which
the Dowker persistence diagrams capture meaningful structure, whereas the Rips per-
sistence diagrams do not.

We then probe the question “What happens to the Dowker or Rips persistence
diagram of a network upon reversal of one (or more) edges?” Intuitively, if either of
these persistence diagrams captures asymmetry, we would see a change in the diagram
after applying this reversal operation to an edge.

6.1 Cycle networks

For each n ∈ N, let (Xn, En,WEn ) denote the weighted graph with vertex set Xn :=
{x1, x2, . . . , xn}, edge set En := {(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1)}, and
edge weights WEn : En → R given by writing WEn (e) = 1 for each e ∈ En . Next
let ωGn : Xn × Xn → R denote the shortest path distance induced on Xn × Xn by
WEn . Then we write Gn := (Xn,ωGn ) to denote the network with node set Xn and
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weights given by ωGn . Note that ωGn (x, x) = 0 for each x ∈ Xn . See Fig. 3 for some
examples.

We say thatGn is the cycle network of length n. Cycle networks are highly asymmet-
ric because for every consecutive pair of nodes (xi , xi+1) in a graph Gn , where 1 ≤ i
mod (n) ≤ n, we have ωGn (xi , xi+1) = 1, whereas ωGn (xi+1, xi ) = diam(Gn) =
n − 1, which is much larger than 1 when n is large.

To provide further evidence that Dowker persistence is sensitive to asymmetry, we
computed both the Rips and Dowker persistence diagrams, in dimensions 0 and 1,
of cycle networks Gn , for values of n between 3 and 6. Computations were carried
out using Javaplex in Matlab with Z2 coefficients. The results are presented in
Fig. 3. Based on our computations, we were able to conjecture and prove the result
in Theorem 33, which gives a precise characterization of the 1-dimensional Dowker
persistence diagram of a cycle network Gn , for any n. Furthermore, the 1-dimensional
Dowker persistence barcode for any Gn contains only one persistent interval, which
agrees with our intuition that there is only one nontrivial loop in Gn . On the other
hand, for large n, the 1-dimensional Rips persistence barcodes contain more than one
persistent interval. This can be seen in the Rips persistence barcode of G6, presented
in Fig. 3. Moreover, for n = 3, 4, the 1-dimensional Rips persistence barcode does
not contain any persistent interval at all. This suggests that Dowker persistence dia-
grams/barcodes are an appropriate method for analyzing cycle networks, and perhaps
asymmetric networks in general.
Notation In the remainder of this section, we will prove results involving Dowker
sink complexes of the cycle networks Gn and associated vector spaces at a range of
resolutions δ. For convenience, wewill writeDsi

δ := Dsi
δ,Gn

(where n will be fixed) and
Cδ
k := Ck(D

si
δ ), the k-chain vector space associated toD

si
δ for each k ∈ Z+. For each

k ∈ Z+, the boundary map fromCδ
k toC

δ
k−1 will be denoted ∂δ

k . Whenever we write xi
to denote a vertex ofGn , the subscript i should be understood as i (mod n). Wewrite ei
to denote the 1-simplex [xi , xi+1] for each 1 ≤ i ≤ n, where xn+1 is understood to be
x1. Given an element γ ∈ ker(∂δ

k ) ⊆ Cδ
1, we will write ⟨γ ⟩δ to denote its equivalence

class in the quotient vector space ker(∂δ
k )/ im(∂δ

k ). We will refer to the operation of
taking this quotient as passing to homology.

The following theorem contains the characterization result for 1-dimensional
Dowker persistence diagrams of cycle networks.

Theorem 33 Let Gn = (Xn,ωGn ) be a cycle network for some n ∈ N, n ≥ 3. Then
we obtain:

DgmD
1 (Gn) =

{
(1, ⌈n/2⌉) ∈ R2

}
.

Thus DgmD
1 (Gn) consists of precisely the point (1, ⌈n/2⌉) ∈ R2 with multiplicity 1.

Proof of Theorem 33 The proof occurs in three stages: first we show that a 1-cycle
appears at δ = 1, next we show that this 1-cycle does not become a boundary until
δ = ⌈n/2⌉, and finally that any other 1-cycle belongs to the same equivalence class
upon passing to homology (this shows that the single point in the persistence diagram
has multiplicity 1).
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The cycle network G3
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The cycle network G5
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The cycle network G6

Fig. 3 The first column contains illustrations of cycle networks G3,G4,G5 and G6. The second column
contains the corresponding Dowker persistence barcodes, in dimensions 0 and 1. Note that the persistent
intervals in the 1-dimensional barcodes agree with the result in Theorem 33. The third column contains
the Rips persistence barcodes of each of the cycle networks. Note that for n = 3, 4, there are no persistent
intervals in dimension 1. On the other hand, for n = 6, there are two persistent intervals in dimension 1

Note that for δ < 1, there are no 1-simplices in Dsi
δ , and so H1(D

si
δ ) is trivial.

Suppose 1 ≤ δ < 2. ⊓3
Claim 5 There are no 2-simplices in Dsi

δ for 1 ≤ δ < 2.

Proof To see this, let xi , x j , xk be any three distinct vertices in Xn . Assume towards
a contradiction that there exists x ∈ Xn such that (xi , x), (x j , x), (xk, x) ∈ Rδ,Xn ,
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where Rδ,Xn is as given by Eq. 3. Thus ωGn (xi , x) ∈ {0, 1}, so either x = xi or
x = xi+1. Similarly we get that x = x j or x = x j+1, and that x = xk or x = xk+1.
But this is a contradiction, since xi , x j , xk are all distinct. ⊓3

By the claim, there are no 2-simplices in Dsi
δ , so im(∂δ

2) is trivial and the only
1-chains are linear combinations of ei terms. Next, we define:

vn := e1 + e2 + · · · + en = [x1, x2] + [x2, x3] + · · · + [xn, x1].

Note that vn ∈ Cδ
1 for all δ ≥ 1. We also have ∂δ

1(vn) = 0, for any δ ≥ 1. In other
words, vn is a 1-cycle for any δ ≥ 1.

Claim 6 Let 1 ≤ δ < 2. Then vn generates ker(∂δ
1) ⊆ Cδ

1 .

Proof The only 1-simplices in Dsi
δ are of the form ei , for 1 ≤ i ≤ n. So it suffices

to show that any linear combination of the ei terms is a multiple of vn . Let u =∑n
i=1 ai ei ∈ ker(∂δ

1), for some a1, . . . , an ∈ K. Then,

0 = ∂δ
1(u) =

n∑

i=1

ai∂δ
1(ei ) =

n∑

i=1

ai ([xi+1]− [xi ])

=
n∑

i=1

(ai−1 − ai )[xi ], where x0 is understood to be xn .

Since all the [xi ] are linearly independent, it follows that a1 = a2 = · · · = an . Thus
it follows that u is a constant multiple of vn . This proves the claim. ⊓3

By the two preceding claims, it follows that {⟨vn⟩δ} is a basis for H1(D
si
δ ), for

δ ∈ [1, 2). More specifically, ⟨vn⟩δ is a cycle that appears at δ = 1 and does not
become a boundary until at least δ = 2, and any other cycle in Cδ

1, for δ ∈ [1, 2), is
in the linear span of vn . Next, suppose δ ≥ 2. Note that this allows the appearance of
cycles that are not in the span of vn . In the next claim, we show that upon passing to
homology, the equivalence class of any such cycle coincides with that of vn . This will
show that there can be at most one nontrivial element in Dgmsi

1 (Gn).

Claim 7 Let δ ≥ 2, and let y = ∑p
i=1 aiσi ∈ ker(∂δ

1) for some p ∈ N, some
a1, . . . , ap ∈ K, and some σ1, . . . , σp ∈ Dsi

δ . Then there exists a choice of coef-
ficients (bi )ni=1 ∈ Kn such that z = ∑n

i=1 bi ei ∈ ker(∂δ
1) and y − z ∈ im(∂δ

2).
Moreover, we obtain ⟨y⟩δ = ⟨z⟩δ = ⟨vn⟩δ upon passing to homology.

Proof To see this, fix σi ∈ Dsi
δ , and write σi = [x j , xk] for some 1 ≤ j, k ≤ n. If

k = j + 1 (resp. k = j − 1), then we already have σi = e j (resp. σi = ek), so there is
nothing more to show. Assume k /∈ { j+1, j−1}. SinceωGn (x j , xk)+ωGn (xk, x j ) =
n, we have two cases: (1) ωGn (x j , xk) ≤ n/2, or (2) ωGn (xk, x j ) < n/2. In the first
case, we have k = j + l for some integer l ∈ [2, n/2] (all numbers are taken modulo
n). In the second case, j = k + l for some integer l ∈ [2, n/2) (also modulo n).
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Fig. 4 Given two points x j , xk ∈ Xn , we have either ωGn (x j , xk ) ≤ n/2, or ωGn (xk , x j ) < n/2. To see
this, note that ωGn (x, x

′)+ ωGn (x
′, x) = n for any x ̸= x ′ ∈ Xn

Fig. 5 Three possible locations for a δ-sink x of a simplex [x j , xk ], assuming that ωGn (x j , xk ) ≤ n/2. For
the figure on the left, note that ωGn (xk , x) ≥ n/2 ≥ ωGn (x j , xk ). For the figure in the middle, note that
ωGn (x j , x) ≥ ωGn (x j , xk ). Finally, for the figure on the right, where x = xk , note that ωGn (x j , x) =
ωGn (x j , xk ) and ωGn (xk , x) = 0

The situation is illustrated in Fig. 4. Both cases are similar, so we only prove the case
ωGn (x j , xk) ≤ n/2.

Recall that any δ-sink x ∈ Xn for [x j , xk] satisfies max(ωGn (x j , x),ωGn (xk, x)) ≤
δ, by the δ-sink condition (Eq. 4). Also note that such a δ-sink x satisfies

max(ωGn (x j , x),ωGn (xk, x)) ≥ ωGn (x j , xk),

as can be seen from Fig. 5. So whenever some x ∈ Xn is a δ-sink for [x j , xk], we have
xk as a valid δ-sink for [x j , xk]. Since [x j , xk] ∈ Dsi

δ , it must have a δ-sink x ∈ Xn .
Thus xk is a valid δ-sink for [x j , xk]. Next let l ∈ [2, n/2] be an integer such that
k = j + l (modulo n). Notice that:

0 = ωGn (xk, xk) = ωGn (x j+l , xk) < ωGn (x j+l−1, xk)

< · · · < ωGn (x j+1, xk) < ωGn (x j , xk) ≤ δ.

Then observe that:

[x j , x j+1, xk], [x j+1, x j+2, xk], . . . , [xk−2, xk−1, xk] ∈ Dsi
δ ,
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since xk is a δ-sink for all these 2-simplices. One then verifies the following:

∂δ
2
(
[x j , x j+1, xk] + [x j+1, x j+2, xk] + · · · + [xk−2, xk−1, xk]

)

= ∂δ
2

⎛

⎝
k− j−2∑

q=0

[x j+q , x j+q+1, xk]

⎞

⎠

=
k− j−2∑

q=0

[x j+q+1, xk]−
k− j−2∑

q=0

[x j+q , xk] +
k− j−2∑

q=0

[x j+q , x j+q+1]

=
k− j−2∑

q=0

[x j+q+1, xk]− [x j , xk]−
k− j−3∑

q=0

[x j+q+1, xk] +
k− j−2∑

q=0

[x j+q , x j+q+1]

= [x j , x j+1] + [x j+1, x j+2] + · · · + [xk−1, xk]− [x j , xk]
= e j + e j+1 + · · · + ek−1 − σi .

Thus ai (e j + e j+1 + · · · + ek−1)− aiσi ∈ im(∂δ
2). Repeating this process for all σi ,

i ∈ {1, . . . , p}, we obtain the coefficients (bi )ni=1 such that
∑p

i=1 aiσi −
∑n

i=1 bi ei ∈
im(∂δ

2). Let z = ∑n
i=1 bi ei . Then y − z ∈ im(∂δ

2). Moreover, since ∂δ
1 ◦ ∂δ

2 = 0, it
follows that ∂δ

1(y)− ∂δ
1(z) = 0, so z ∈ ker(∂δ

1).
Finally, note that an argument analogous to that of Claim 6 shows that b1 = b2 =

· · · = bn . Hence it follows that z is a multiple of vn . Thus ⟨z⟩δ = ⟨vn⟩δ . This proves
the claim. ⊓3

By Claims 6 and 7, it follows that H1(D
si
δ ) is generated by ⟨vn⟩δ for all δ ≥ 1, so

dim(H1(D
si
δ )) ≤ 1 for all δ ≥ 1. It remains to show that ⟨vn⟩δ does not become trivial

until δ = ⌈n/2⌉.
The cases n = 3, 4 can now be completed quickly, so we focus on these simpler

situations first. For either of n = 3, 4, we have ⌈n/2⌉ = 2. Suppose δ = 2 and n = 3.
Then we have [x1, x2, x3] ∈ Dsi

δ because diam(Gn) = 2 and any of x1, x2, x3 can be
a 2-sink for [x1, x2, x3]. Then,

∂δ
2([x1, x2, x3]) = [x2, x3]− [x1, x3] + [x1, x2] = e1 + e2 + e3 = v3.

Recall that by Claim 5, v3 /∈ im(∂δ
2) for any δ < 2. Thus by Claim 6 and the preceding

equation, v3 generates ker(∂δ
1) for 1 ≤ δ < 2, and becomes a boundary for precisely

δ ≥ 2. Thus Dgmsi
1 (G3) = {(1, 2)} . Next, suppose δ = 2 and n = 4. Then we

have [x1, x2, x3], [x1, x3, x4] ∈ Dsi
δ with x3, x1 as 2-sinks, respectively. By a direct

computation, we then have:

∂δ
2([x1, x2, x3] + [x1, x3, x4]) = e1 + e2 + e3 + e4 = v4.

By following the same argument as for the case n = 3, we see that Dgmsi
1 (G4) =

{(1, 2)} .
In the sequel, we assume that n > 4. Recall that it remains to show that ⟨vn⟩δ

does not become trivial until δ = ⌈n/2⌉, and that ⟨vn⟩δ = 0 for all δ ≥ ⌈n/2⌉. We
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have already shown that ⟨vn⟩δ is not trivial for δ ∈ [1, 2). We proceed by defining the
following:

γn := [x1, x2, x3] + [x1, x3, x4] + · · · + [x1, xn−1, xn] =
n−2∑

i=1

[x1, xi+1, xi+2].

Claim 8 For each δ ≥ ⌈n/2⌉, we have γn ∈ Cδ
2 and ∂δ

2(γn) = vn. In particular,
⟨vn⟩δ = 0 for all such δ.

Proof Let δ ≥ ⌈n/2⌉. Notice that

ωGn (x⌈n/2⌉+1, x1) = n − ωGn (x1, x⌈n/2⌉+1) = n − ⌈n/2⌉ ≤ n/2 ≤ ⌈n/2⌉ ≤ δ,

so ωGn (xi , x1) ≤ δ for each i ∈ {⌈n/2⌉ + 1, ⌈n/2⌉ + 2, . . . , n}. Then for each
i ∈ {⌈n/2⌉ + 1, ⌈n/2⌉ + 2, . . . , n − 1}, we have [xi , xi+1, x1] ∈ Dsi

δ , with x1 as a
δ-sink.

Also notice that for each i ∈ {1, . . . , ⌈n/2⌉},

ωGn (xi , x⌈n/2⌉+1) ≤ ωGn (x1, x⌈n/2⌉+1) = ⌈n/2⌉ ≤ δ,

so ωGn (xi , x⌈n/2⌉+1) ≤ δ. Thus for any i ∈ {2, . . . , ⌈n/2⌉}, we have [x1, xi , xi+1] ∈
Dsi

δ , with x⌈n/2⌉+1 as a δ-sink.
Combining the two preceding observations, we see that for any i ∈ {2, . . . , n− 2},

we have [x1, xi+1, xi+2] ∈ Dsi
δ . It follows that γn ∈ Cδ

2.
Next we observe the following:

∂δ
2(γn) = ∂δ

2

(
n−2∑

i=1

[x1, xi+1, xi+2]
)

=
n−2∑

i=1

[xi+1, xi+2]−
n−2∑

i=1

[x1, xi+2] +
n−2∑

i=1

[x1, xi+1]

=
n−2∑

i=1

[xi+1, xi+2]−
n−2∑

i=1

[x1, xi+2] + [x1, x2] +
n−2∑

i=2

[x1, xi+1]

=
n−2∑

i=1

[xi+1, xi+2] + [x1, x2]− [x1, xn] = vn .

It follows that for any δ ≥ ⌈n/2⌉, we have vn ∈ im(∂δ
2), and so ⟨vn⟩δ = 0 for each

such δ. ⊓3

Claim 9 There does not exist δ ∈ [2, ⌈n/2⌉) such that ⟨vn⟩δ is trivial.
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Fig. 6 Placement of x⌈n/2⌉ and x⌈n/2⌉+1, depending on whether n is even or not

Proof Let 2 ≤ δ < ⌈n/2⌉. As a first step, we wish to show that γn /∈ Cδ
2. For this step,

it suffices to show that the 2-simplex σ := [x1, x⌈n/2⌉, x⌈n/2⌉+1] does not belong to
Dsi

δ . The placement of x⌈n/2⌉ and x⌈n/2⌉+1 is illustrated in Fig. 6.
By an argument similar to that used in Fig. 5, one verifies that there exists a δ-sink

for σ if and only if at least one of x1, x⌈n/2⌉, x⌈n/2⌉+1 is a δ-sink for σ . But note the
following:

ωGn (x⌈n/2⌉, x1) = n − (⌈n/2⌉ − 1) =
{
n/2+ 1 : n even
⌈n/2⌉ : n odd

≥ ⌈n/2⌉ > δ,

so x1 cannot be a δ-sink for σ . Similarly we note that ωGn (x⌈n/2⌉+1, x⌈n/2⌉) = n > δ

and ωGn (x1, x⌈n/2⌉+1) = ⌈n/2⌉ > δ, so neither x⌈n/2⌉ nor x⌈n/2⌉+1 can be δ-sinks for
σ . Thus σ /∈ Dsi

δ , and so γn /∈ Cδ
2.

Suppose there exists γ ′ ∈ Cδ
2 such that ∂δ

2(γ
′) = vn . Since [x1, x2] is a summand

of vn , we must have a j [x1, x2, x j ] as a summand of γ ′, for some coefficient a j and
some 3 ≤ j ≤ n. First suppose that x j is a sink for [x1, x2, x j ]. We claim that
γ ′ is homologous to a chain containing [x1, x2, x3] as a summand. If j = 3, then
we are done, so suppose j > 3. Then we also know that [x1, x2, x3, x j ] is a 3-
simplex in Dsi

δ . Let γ ′′ be the chain obtained from γ ′ by replacing all [x1, x2, x j ]
terms where j > 3 with terms of the form [x1, x2, x3] − [x2, x3, x j ] + [x1, x3, x j ].
Since ∂δ

3([x1, x2, x3, x j ]) = [x2, x3, x j ]− [x1, x3, x j ]+[x1, x2, x j ]− [x1, x2, x3] and
∂δ
2 ◦ ∂δ

3 = 0, we know that ∂δ
2(γ

′′) = ∂δ
2(γ

′) = vn .
Now ∂δ

2([x1, x2, x3]) contributes an [x1, x3] summand which does not appear in
vn , so it must be cancelled by some other terms in γ ′′. Thus there must exist another
summand [x1, x3, xk] in γ ′′, where k > 3. We repeat the preceding argument to
update γ ′′ to a chain homologous to γ ′ containing both [x1, x2, x3] and [x1, x3, x4]
as summands, but no summands of the form [x1, x3, x j ] for j > 4. We describe one
more step of this iteration. Since [x1, x4] does not appear in vn , we must have some
[x1, x4, x j ] terms in γ ′′ such that after applying ∂δ

2 , the [x1, x4] terms from [x1, x3, x4]
and [x1, x4, x j ] are cancelled. We previously collected and removed all [x1, x2, x4]
terms, so we must have j > 4. Thus the iteration forces us to have “bigger and bigger”
triangles. Proceeding in this way, we obtain a chain homologous to γ ′ that contains
[x1, x⌈n/2⌉, x⌈n/2⌉+1] as a summand. But this is a contradiction to what we have shown
previously, i.e. that [x1, x⌈n/2⌉, x⌈n/2⌉+1] is not a simplex inDsi

δ .

123

Author's personal copy



S. Chowdhury, F. Mémoli

In the case where x j is not a sink for [x1, x2, x j ], we must have x2 as a sink instead.
Using similar reasoning as above, we replace γ ′ in this instance by a homologous
chain containing [xn, x1, x2] as a summand. Since [xn, x2] is not a summand of vn ,
we obtain another homologous chain containing [xn−1, xn, x1] as a summand, then
a homologous chain containing [xn−1, xn, x1], [xn−2, xn−1, x1] as summands, and so
on until we again obtain a homologous chain containing [x1, x⌈n/2⌉, x⌈n/2⌉+1] as a
summand. Once again, this is a contradiction. This proves the claim.

Thus we have shown that vn is a nontrivial cycle that appears at δ = 1, and becomes
a boundary at exactly δ = ⌈n/2⌉. Furthermore, we have shown that upon passing to
homology, the equivalence classes of all cycles coincide with that of vn . Thus there
is only one off-diagonal point (1, ⌈n/2⌉) on the 1-dimensional persistence diagram,
which appears with multiplicity one. This concludes the proof. ⊓3
Remark 34 Fromour experimental results (seeFig. 3), it appears that the 1-dimensional
Rips persistence diagram of a cycle network does not admit a characterization as sim-
ple as that given by Theorem 33 for the 1-dimensional Dowker persistence diagram.
Moreover, the Rips complexesRδ

Gn
, δ ∈ R, n ∈ Ncorrespond to certain types of inde-

pendence complexes that appear independently in the literature, and whose homotopy
types remain open (Engström 2009, Question 5.3). On a related note, we point the
reader to Adamaszek and Adams (2017) for a complete characterization of the homo-
topy types of Rips complexes of points on the circle (equipped with the restriction of
the arc length metric).

To elaborate on the connection to Engström (2009), we write Hk
n to denote the

undirected graph with vertex set {1, . . . , n}, and edges given by pairs (i, j) where
1 ≤ i < j ≤ n and either j − i < k or (n + i) − j < k. Next we write Ind(Hk

n ) to
denote the independence complex of Hk

n , which is the simplicial complex consisting
of subsets σ ⊆ {1, 2, . . . , n} such that no two elements of σ are connected by an
edge in Hk

n . Then we have Ind(Hk
n ) = Rn−k

Gn
for each k, n ∈ N such that k < n. To

gain intuition for this equality, fix a basepoint 1, and consider the values of j ∈ N
for which the simplex [1, j] belongs to Ind(Hk

n ) and to Rn−k
Gn

, respectively. In either
case, we have k + 1 ≤ j ≤ n − k + 1. Using the rotational symmetry of the points,
one then obtains the remaining 1-simplices. Rips complexes are determined by their
1-skeleton, so this suffices to constructRn−k

Gn
. Analogously, Ind(Hk

n ) is determined by
the edges in Hk

n , and hence also by its 1-skeleton. In Engström (2009, Question 5.3),
the author writes that the homotopy type of Ind(Hk

n ) is still unsolved. Characterizing
the persistence diagrams DgmR

k (Gn) thus seems to be a useful future step, both in
providing a computational suggestion for the homotopy type of Ind(Hk

n ), and also in
providing a valuable example in the study of persistence of directed networks.

Remark 35 Theorem 33 has the following implication for data analysis: nontrivial 1-
dimensional homology in the Dowker persistence diagram of an asymmetric network
suggests the presence of directed cycles in the underlying data. Of course, it is not nec-
essarily true that nontrivial 1-dimensional persistence can occur only in the presence
of a directed circle.

Remark 36 Our motivation for studying cycle networks is that they constitute directed
analogues of circles, and we were interested in seeing if the 1-dimensional Dowker
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persistence diagramwould be able to capture this analogy. Theorem 33 shows that this
is indeed the case: we get a single nontrivial 1-dimensional persistence interval, which
is what we would expect when computing the persistent homology of a circle in the
metric space setting. We further studied the 2-dimensional Dowker persistence dia-
grams of cycle networks. Our computational examples, some of which are illustrated
in Fig. 7, enabled us to conjecture:

Conjecture 1 Let n ∈ N, n ≥ 3, and let Gn be a cycle network. If n is odd, then
DgmD

2 (Gn) is trivial. If n is even, then DgmD
2 (Gn) = [( n2 , n

2 + 1) ∈ R2], and the
multiplicity of this point is n

2 − 1.

This computationally motivated conjecture is in fact true; moreover, we have a full
characterization of the persistence diagram of a cycle network across all dimensions
k ∈ Z+. This characterization relies on results in Adamaszek and Adams (2017)
and Adamaszek et al. (2016), and is stated for even and odd dimensions below:

Theorem 37 (Even dimension) Fix n ∈ N, n ≥ 3. If l ∈ N is such that n is divisible
by (l + 1), and k := nl

l+1 is such that 0 ≤ k ≤ n − 2, then DgmD
2l (Gn) consists of

precisely the point ( nl
l+1 ,

nl
l+1 + 1) with multiplicity n

l+1 − 1. If l or k do not satisfy the
conditions above, then DgmD

2l (Gn) is trivial.

As a special case, Theorem 37 proves Conjecture 1 by setting l = 1. If n is odd,
then it is not divisible by (l + 1) = 2, and so DgmD

2 (Gn) is trivial. If n is even, then
it is divisible by (l + 1) = 2, and nl

l+1 = n
2 ≤ n − 2 because n is at least 4. Thus

DgmD
2 (Gn) consists of the point ( n2 ,

n
2 + 1) with multiplicity n

2 − 1.

Theorem 38 (Odd dimension) Fix n ∈ N, n ≥ 3. Then for l ∈ N, define Ml :={
m ∈ N : nl

l+1 < m < n(l+1)
l+2

}
. If Ml is empty, thenDgmD

2l+1(Gn) is trivial. Otherwise,
we have:

DgmD
2l+1(Gn) =

{(
al ,

⌈
n(l+1)
l+2

⌉)}
,

where al := min {m ∈ Ml} . We use set notation (instead of multisets) to mean that
the multiplicity is 1.

In particular, for l = 0, we have nl
l+1 = 0 and n(l+1)

l+2 = n
2 ≥ 3/2, so 1 ∈ Ml . Thus

we have DgmD
1 (Gn) =

{(
1,

⌈ n
2

⌉)}
, and so Theorem 38 recovers Theorem 33 as a

special case.However,whereas the proof of Theorem33 is elementary and pedagogical
(it relies on intuitive observations about the structure of a cycle network), the proofs
of Theorems 37 and 38 use sophisticated machinery developed across Adamaszek and
Adams (2017) and Adamaszek et al. (2016). We provide details for Theorem 33 in the
body of the paper, and relegate full details of Theorems 37 and 38 to Appendix B.
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Fig. 7 Sample 2-dimensional Dowker persistence barcodes for cycle networks G4,G6,G8. In our experi-
ments, 2-dimensional Dowker persistence barcodes for Gn were always empty for n odd

6.2 Sensitivity to network transformations

We first make the following:

Definition 6 (Pair swaps) Let (X ,ωX ) ∈ N be a network. For any z, z′ ∈ X , define
the (z, z′)-swap of (X ,ωX ) to be the network SX (z, z′) := (Xz,z′ ,ωz,z′

X ) defined as
follows:

Xz,z′ := X ,

For any x, x ′ ∈ Xz,z′ , ωz,z′
X (x, x ′) :=

⎧
⎪⎨

⎪⎩

ωX (x ′, x) : x = z, x ′ = z′

ωX (x ′, x) : x ′ = z, x = z′

ωX (x, x ′) : otherwise.

We then pose the following question:

Given a network (X ,ωX ) and an (x, x ′)-swap SX (x, x ′) for some x, x ′ ∈ X ,
how do the Rips or Dowker persistence diagrams of SX (x, x ′) differ from those
of (X ,ωX )?

This situation is illustrated in Fig. 8. Example 42 shows an example where the Dowker
persistence diagram captures the variation in a network that occurs after a pair swap,
whereas the Rips persistence diagram fails to capture this difference. Furthermore,
Remark 40 shows that Rips persistence diagrams always fail to do so.

We also consider the extreme situation where all the directions of the edges of a
network are reversed, i.e. the network obtained by applying the pair swap operation to
each pair of nodes. We would intuitively expect that the persistence diagrams would
not change. The following discussion shows that the Rips and Dowker persistence
diagrams are invariant under taking the transpose of a network.

Proposition 39 Recall the transposition map t and the shorthand notation X⊤ =
t(X) from Definition 1. Let k ∈ Z+. Then Dgmsi

k (X) = Dgmso
k (X⊤ ), and therefore

DgmD
k (X) = DgmD

k (X⊤ ) by Theorem 3.

Remark 40 (Pair swaps and their effect) Let (X ,ωX ) ∈ N , let z, z′ ∈ X , and let
σ ∈ pow(X). Then we have:

max
x,x ′∈σ

ωX (x, x ′) = max
x,x ′∈σ

ωz,z′
X (x, x ′).
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a

b c

(X,ωX)
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b c

(Y,ωY )

0

0 0

0

0 0
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1 4
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5
3

6
1 2

4

5
3

Fig. 8 (Y ,ωY ) is the (a, c)-swap of (X ,ωX )

Using this observation, one then repeats the arguments used in the proof of Proposi-
tion 39 to show that:

DgmR
k (X) = DgmR

k (SX (z, z′)), for each k ∈ Z+.

This encodes the intuitive fact that Rips persistence diagrams are blind to pair swaps.
Moreover, successively applying the pair swap operation over all pairs produces the
transpose of the original network, and so it follows that DgmR

k (X) = DgmR
k (X⊤ ).

On the other hand, k-dimensional Dowker persistence diagrams are not necessarily
invariant to pair swaps when k ≥ 1. Indeed, Example 42 below constructs a space X
for which there exist points z, z′ ∈ X such that

DgmD
1 (X) ̸= DgmD

1 (SX (z, z′)).

However, 0-dimensional Dowker persistence diagrams are still invariant to pair
swaps:

Proposition 41 Let (X ,ωX ) ∈ N , let z, z′ be any two points in Z, and let σ ∈ pow(X).
Then we have:

DgmD
0 (X) = DgmD

0 (SX (z, z′)).

Example 42 Consider the three node dissimilarity networks (X ,ωX ) and (Y ,ωY ) in
Fig. 8.Note that (Y ,ωY ) coincideswith SX (a, c).Wepresent both theDowker andRips
persistence barcodes obtained from these networks. Note that the Dowker persistence
barcode is sensitive to the difference between (X ,ωX ) and (Y ,ωY ), whereas the Rips
barcode is blind to this difference. We refer the reader to Sect. 7 for details on how we
compute these barcodes (Figs. 9, 10).

To show how the Dowker complex is constructed, we also list the Dowker sink
complexes of the networks in Fig. 8, and also the corresponding homology dimensions
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Fig. 9 Dowker persistence barcodes of networks (X ,ωX ) and (Y ,ωY ) from Fig. 8

Fig. 10 Rips persistence barcodes of networks (X ,ωX ) and (Y ,ωY ) fromFig. 8.Note that theRips diagrams
indicate no persistent homology in dimensions higher than 0, in contrast with the Dowker diagrams in Fig. 9

across a range of resolutions. Note that when we write [a, b](a), we mean that a is a
sink corresponding to the simplex [a, b].

Dsi
0,X = {[a], [b], [c]} dim(H1(D

si
0,X )) = 0

Dsi
1,X = {[a], [b], [c], [a, b](a)} dim(H1(D

si
1,X )) = 0

Dsi
2,X = {[a], [b], [c], [a, b](a), [a, c](a), [b, c](a), [a, b, c](a)} dim(H1(D

si
2,X )) = 0

Dsi
3,X = {[a], [b], [c], [a, b](a), [a, c](a), [b, c](a), [a, b, c](a)} dim(H1(D

si
3,X )) = 0

Dsi
0,Y = {[a], [b], [c]} dim(H1(D

si
0,Y )) = 0

Dsi
1,Y = {[a], [b], [c], [a, b](a)} dim(H1(D

si
1,Y )) = 0

Dsi
2,Y = {[a], [b], [c], [a, b](a), [a, c](c)} dim(H1(D

si
2,Y )) = 0

Dsi
3,Y = {[a], [b], [c], [a, b](a), [a, c](c), [b, c](b)} dim(H1(D

si
3,Y )) = 1

Dsi
4,Y = {[a], [b], [c], [a, b](a), [a, c](a), [b, c](a), [a, b, c](a)} dim(H1(D

si
4,Y )) = 0

Note that for δ ∈ [3, 4), dim(H1(D
si
δ,Y )) = 1, whereas dim(H1(D

si
δ,X )) = 0 for

each δ ∈ R.

Based on the discussion in Remark 40, Proposition 41, and Example 42, we con-
clude the following:

Moral: Unlike Rips persistence diagrams, Dowker persistence diagrams are truly
sensitive to asymmetry.

We summarize some of these results:
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Theorem 43 Recall the symmetrization and transposition maps s and t from Defini-
tion 1. Then:
(1) R ◦ s = R,
(2) Dso ◦ t = Dsi, and
(3) Dsi ◦ t = Dso.
Also, there exist (X ,ωX ), (Y ,ωY ) ∈ N such that (Dsi ◦ s)(X) ̸= Dsi(X), and (Dso ◦
s)(Y ) ̸= Dso(Y ).

Proof These follow from Example 42, Remark 14, and Proposition 39. ⊓3

7 Implementation and an experiment on network classification

In this section, we present the results of an experiment where we applied our methods
to perform a classification task on a database of networks. All persistent homology
computations were carried out using the Javaplex package for Matlab. A full
description of Javaplex can be found in Tausz et al. (2011). We used K = Z2 as
the field of coefficients for all our persistence computations. The dataset and software
used for our computations are available as part of the PersNet software package
on https://research.math.osu.edu/networks/Datasets.html. A version of our simulated
hippocampal networks experiment has appeared in Chowdhury and Mémoli (2016).

All networks in the following experiment were normalized to have weights in the
range [0, 1]. The Dowker sink filtration was passed into Javaplex to obtain 0 and
1-dimensional Dowker persistence barcodes.

7.1 Simulated hippocampal networks

In the neuroscience literature, it has been shown that as an animal explores a given
environment or arena, specific “place cells” in the hippocampus show increased activ-
ity at specific spatial regions, called “place fields” (O’Keefe and Dostrovsky 1971).
Each place cell shows a spike in activity when the animal enters the place field linked
to this place cell, accompanied by a drop in activity as the animal moves far away from
this place field. To understand how the brain processes this data, a natural question
to ask is the following: Is the time series data of the place cell activity, referred to as
“spike trains”F, enough to detect the structure of the arena?

Approaches based on homology (Curto and Itskov 2008) and persistent homol-
ogy (Dabaghian et al. 2012) have shown positive results in this direction. In Dabaghian
et al. (2012), the authors simulated the trajectory of a rat in an arena containing “holes.”
A simplicial complex was then built as follows: whenever n+ 1 place cells with over-
lapping place fields fired together, an n-simplex was added. This yielded a filtered
simplicial complex indexed by a time parameter. By computing persistence, it was
then shown that the number of persistent bars in the 1-dimensional barcode of this
filtered simplicial complex would accurately represent the number of holes in the
arena.

We repeated this experiment with the following change in methodology: we simu-
lated the movement of an animal, and corresponding hippocampal activity, in arenas
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with a variety of obstacles. We then induced a directed network from each set of
hippocampal activity data, and computed the associated 1-dimensional Dowker per-
sistence diagrams. We were interested in seeing if the bottleneck distances between
diagrams arising from similar arenas would differ significantly from the bottleneck
distance between diagrams arising from different arenas. To further exemplify our
methods, we repeated our analysis after computing the 1-dimensional Rips persis-
tence diagrams from the hippocampal activity networks.

In our experiment, there were five arenas. The first was a square of side length
L = 10, with four circular “holes” or “forbidden zones” of radius 0.2L that the
trajectory could not intersect. The other four arenas were those obtained by removing
the forbidden zones one at a time. In what follows, we refer to the arenas of each type
as 4-hole, 3-hole, 2-hole, 1-hole, and 0-hole arenas. For each arena, a random-walk
trajectory of 5000 steps was generated, where the animal could move along a square
grid with 20 points in each direction. The grid was obtained as a discretization of the
box [0, L]× [0, L], and each step had length 0.05L . The animal could move in each
direction with equal probability. If one or more of these moves took the animal outside
the arena (a disallowed move), then the probabilities were redistributed uniformly
among the allowed moves. Each trajectory was tested to ensure that it covered the
entire arena, excluding the forbidden zones. Formally, we write the time steps as a set
T := {1, 2, . . . , 5000}, and denote the trajectory as a map traj : T → [0, L]2.

For each of the five arenas, 20 trials were conducted, producing a total of 100 trials.
For each trial lk , an integer nk was chosen uniformly at random from the interval
[150, 200]. Then nk place fields of radius 0.05L were scattered uniformly at random
inside the corresponding arena for each lk . An illustration of the place field distribution
is provided in Fig. 11. A spike on a place field was recorded whenever the trajectory
would intersect it. So for each 1 ≤ i ≤ nk , the spiking pattern of cell xi , corresponding
to place field PFi , was recorded via a function ri : T → {0, 1} given by:

ri (t) =
{
1 : if traj(t) intersects PFi ,
0 : otherwise t ∈ T .

The matrix corresponding to ri is called the raster of cell xi . A sample raster is
illustrated in Fig. 11. For each trial lk , the corresponding network (Xk,ωXk ) was
constructed as follows: Xk consisted of nk nodes representing place fields, and for
each 1 ≤ i, j ≤ nk , the weight ωXk (xi , x j ) was given by:

ωXk (xi , x j ) := 1− Ni, j (5)∑nk
i=1 Ni, j (5)

,

where Ni, j (5) = card
(
{(} s, t) ∈ T 2 : t ∈ [2, 5000], t − s ∈ [1, 5],

r j (t) = 1, ri (s) = 1
)
.

In words, Ni, j (5) counts the pairs of times (s, t), s < t, such that cell x j spikes (at
a time t) after cell xi spikes (at a time s), and the delay between the two spikes is fewer
than 5 time steps. The idea is that if cell x j frequently fires within a short span of time
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Fig. 11 Bottom right: Sample place cell spiking pattern matrix. The x-axis corresponds to the number of
time steps, and the y-axis corresponds to the number of place cells. Black dots represent spikes. Clockwise
from bottom middle: Sample distribution of place field centers in 4, 3, 0, 1, and 2-hole arenas

after cell xi fires, then place fields PFi and PF j are likely to be in close proximity to
each other. The column sum of the matrix corresponding to ωXk is normalized to 1,
and so ω⊤

Xk
can be interpreted as the transition matrix of a Markov process.

Next, we computed the 1-dimensional Dowker persistence diagrams of each of
the 100 networks. Note that DgmD

1 (ωX ) = DgmD
1 (ω⊤

X ) by Proposition 39, so we
are actually obtaining the 1-dimensional Dowker persistence diagrams of transition
matrices of Markov processes. We then computed a 100 × 100 matrix consisting
of the bottleneck distances between all the 1-dimensional persistence diagrams. The
single linkage dendrogram generated from this bottleneck distance matrix is shown in
Fig. 12. The labels are in the format env-<nh>-<nn>, where nh is the number of
holes in the arena/environment, and nn is the number of place fields. Note that with
some exceptions, networks corresponding to the same arena are clustered together.
We conclude that the Dowker persistence diagram succeeded in capturing the intrinsic
differences between the five classes of networks arising from the five different arenas,
even when the networks had different sizes.

We then computed the Rips persistence diagrams of each network, and computed
the 100×100 bottleneck distance matrix associated to the collection of 1-dimensional
diagrams.The single linkage dendrogramgenerated from thismatrix is given inFig. 13.
Notice that the Rips dendrogram does not do a satisfactory job of classifying arenas
correctly.

Remark 44 We note that an alternative method of comparing the networks obtained
from our simulations would have been to compute the pairwise network distances, and
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plot the results in a dendrogram. But dN is NP-hard to compute—this follows from
the fact that computing dN includes the problem of computing Gromov–Hausdorff
distance between finite metric spaces, which is NP-hard (Schmiedl 2015). So instead,
we are computing the bottleneck distances between 1-dimensionalDowker persistence
diagrams, as suggested by Remark 16.

Remark 45 It is possible to compare the current approach with the one taken
in Dabaghian et al. (2012) on a common dataset. We performed this comparison
in Chowdhury et al. (2017) for a similar experiment, but with a stochastic firing model
for the place cells. Interestingly, it turns out that the network approach with Dowker
persistence performs better than the approach in Dabaghian et al. (2012), as indicated
by computing 1-nearest neighbor classification error rates on the bottleneck distance
matrices. A possible explanation is that preprocessing the spiking data into a net-
work automatically incorporates a form of error correction, where the errors consist
of stochastic firing between cells that are non-adjacent. On the other hand, such errors
are allowed to accumulate over time in the approach taken in Dabaghian et al. (2012).
For an alternative error-correction approach, see Chowdhury et al. (2017).

8 Discussion

We provided a complete description of the Rips and Dowker persistence diagrams of
general networks. The stability results we have provided give quantitative guarantees
on the robustness of these persistence diagrams. As a building block, we proved a func-
torial generalization of Dowker’s theorem, which also yields an independent proof of
a folklore strengthening of Dowker’s theorem. We have provided numerous examples
suggesting that Dowker persistence diagrams are an appropriate method for analyzing
general asymmetric networks. For a particular class of such examples, the family of
cycle networks, we have fully characterized their Dowker persistence diagrams in all
dimensions. Finally, we have implemented our methods for a classification task on a
database of networks, and provided interpretations for our results.

We believe that the story of “persistent homology of asymmetric networks” has
more aspects to be uncovered. Of particular interest to us is the analysis of alternative
methods of producing simplicial complexes from asymmetric networks, for example,
the directed flag complex construction of Dłotko et al. (2016). Yet another interest-
ing extension to the non-metric framework has appeared in Edelsbrunner and Wagner
(2017), in the context of computing generalized Čech and Rips complexes for Breg-
man divergences. We remark that a persistent homology framework for the directed
flag complex has been proposed by Turner (2016), but the computational aspects of
this construction have not been addressed in the current literature. Another approach
for computing persistence diagrams from asymmetric networks, which bypasses the
construction of any simplicial complex and operates directly at the chain level is given
inChowdhury andMémoli (2018). Some other interesting questions relate to cycle net-
works: for example, we would like to obtain a characterization of the Rips persistence
diagrams of cycle networks for any dimension k ≥ 1. Finally, it is important to devise
more efficient implementations for the Dowker complexes we present here. It is likely
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Fig. 12 Single linkage dendrogram corresponding to the distance matrix obtained by computing bottleneck
distances between 1-dimensional Dowker persistence diagrams of our database of hippocampal networks
(Sect. 7.1). Note that the 4, 3, and 2-hole arenas are well separated into clusters at threshold 0.1
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Fig. 13 Single linkage dendrogram corresponding to the distance matrix obtained by computing bottleneck
distances between 1-dimensional Rips persistence diagrams of our database of hippocampal networks
(Sect. 7.1). Notice that the hierarchical clustering fails to capture the correct arena types
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that ideas from the literature on efficient construction of Čech complexes (Dantchev
and Ivrissimtzis 2012; Edelsbrunner and Wagner 2017) will be helpful in this regard.
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Appendix A: Proofs

Proof of Lemma 8 The first inequality holds by the Algebraic Stability Theorem. For
the second inequality, note that the contiguous simplicial maps in the diagrams above
induce chain maps between the corresponding chain complexes, and these in turn
induce equal linear maps at the level of homology vector spaces. To be more precise,
first consider themaps tδ+η,δ′+η◦ϕδ and ϕδ′ ◦sδ,δ′ . These simplicial maps induce linear
maps (tδ+η,δ′+η ◦ ϕδ)#, (ϕδ′ ◦ sδ,δ′)# : Hk(Fδ) → Hk(Gδ′+η). Because the simplicial
maps are assumed to be contiguous, we have:

(tδ+η,δ′+η ◦ ϕδ)# = (ϕδ′ ◦ sδ,δ′)#.

By invoking functoriality of homology, we then have:

(tδ+η,δ′+η)# ◦ (ϕδ)# = (ϕδ′)# ◦ (sδ,δ′)#.

Analogous results hold for the other pairs of contiguous maps. Thus we obtain com-
mutative diagrams upon passing to homology, and soHk(F),Hk(G) are η-interleaved
for each k ∈ Z+. Thus we get:

dI(Hk(F),Hk(G)) ≤ η.

⊓3
Proof of Proposition 9 First we show that:

dN (X , Y ) ≥ 1
2 inf{max(dis(ϕ), dis(ψ),CX ,Y (ϕ,ψ),

CY ,X (ψ,ϕ)) : ϕ : X → Y ,ψ : Y → X any maps}.

Let η = dN (X , Y ), and let R be a correspondence such that dis(R) = 2η. We define
maps ϕ : X → Y and ψ : Y → X as follows: for each x ∈ X , set ϕ(x) = y for some
y such that (x, y) ∈ R. Similarly, for each y ∈ Y , set ψ(y) = x for some x such that
(x, y) ∈ R. Thus for any x ∈ X , y ∈ Y , we obtain |ωX (x,ψ(y))−ωY (ϕ(x), y)| ≤ 2η
and |ωX (ψ(y), x) − ωY (y,ϕ(x))| ≤ 2η. So we have both CX ,Y (ϕ,ψ) ≤ 2η and
CY ,X (ψ,ϕ) ≤ 2η. Also for any x, x ′ ∈ X , we have (x,ϕ(x)), (x ′,ϕ(x ′)) ∈ R. Thus
we also have

|ωX (x, x ′)− ωY (ϕ(x),ϕ(x ′))| ≤ 2η.
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So dis(ϕ) ≤ 2η and similarly dis(ψ) ≤ 2η. This proves the “≥” case.
Next we wish to show:

dN (X , Y ) ≤ 1
2 inf{max(dis(ϕ), dis(ψ),CX ,Y (ϕ,ψ),

CY ,X (ψ,ϕ)) : ϕ : X → Y ,ψ : Y → X any maps}.

Suppose ϕ,ψ are given, and 1
2 max(dis(ϕ), dis(ψ),CX ,Y (ϕ,ψ),CY ,X (ψ,ϕ)) = η.

Let RX = {(x,ϕ(x) : x ∈ X} and let RY = {(ψ(y), y) : y ∈ Y }. Then R = RX ∪
RY is a correspondence. We wish to show that for any z = (a, b), z′ = (a′, b′) ∈ R,

|ωX (a, a′)− ωY (b, b′)| ≤ 2η.

This will show that dis(R) ≤ 2η, and so dN (X , Y ) ≤ η.
To see this, let z, z′ ∈ R. Note that there are four cases: (1) z, z′ ∈ RX , (2)

z, z′ ∈ RY , (3) z ∈ RX , z′ ∈ RY , and (4) z ∈ RY , z′ ∈ RX . In the first two cases,
the desired inequality follows because dis(ϕ), dis(ψ) ≤ 2η. The inequality follows in
cases (3) and (4) because CX ,Y (ϕ,ψ) ≤ 2η and CY ,X (ψ,ϕ) ≤ 2η, respectively. Thus
dN (X ,Y ) ≤ η. ⊓3

Proof of Proposition 22 It suffices to show that3 is a simplicial approximation to E|%|,
i.e. whenever E|%|(x) ∈ |σ | for some vertex x ∈ |%(1)| and some simplex σ ∈ |%|, we
also have |3|(x) ∈ |σ | (Spanier 1994, §3.4). Here |σ | denotes the closed simplex of σ ;
for any simplex σ = [v0, . . . , vk], this is the collection of formal convex combinations∑k

i=0 aivi with ai ≥ 0 for each 0 ≤ i ≤ k and
∑k

i=0 ai = 1.
Let x = ∑k

i=0 aiσi be a vertex in |%(1)|, with each ai > 0. Then we have E|%|(x) =∑k
i=0 aiB(σi ) =

∑k
i=0 ai

∑
v∈σi

v/card(σi ), a vertex in |σk |.
Also we have |3|(x) = ∑k

i=0 ai3(σi ), a vertex in |σk |. Thus 3 is a simplicial
approximation to E|%|, and so we have |3| ≃ E|%|. ⊓3

Proof of Proposition 39 Let δ ∈ R. We first claim that Dsi
δ (X) = Dso

δ (X⊤ ). Let σ ∈
Dsi

δ (X). Then there exists x
′ such thatωX (x, x ′) ≤ δ for any x ∈ σ . ThusωX⊤ (x ′, x) ≤

δ. So σ ∈ Dso
δ (X⊤ ). A similar argument shows the reverse containment. This proves

our claim. Thus for δ ≤ δ′ ≤ δ′′, we obtain the following diagram:

Dsi
δ (X) Dsi

δ′(X) Dsi
δ′′(X) . . .

Dso
δ (X⊤ ) Dso

δ′ (X
⊤ ) Dso

δ′′(X
⊤ ) . . .

Since the maps Dsi
δ → Dsi

δ′ , D
so
δ → Dso

δ′ for δ′ ≥ δ are all inclusion maps, it
follows that the diagrams commute. Thus at the homology level, we obtain, via func-
toriality of homology, a commutative diagram of vector spaces where the intervening
vertical maps are isomorphisms. By the Persistence Equivalence Theorem (21), the
diagrams Dgmsi

k (X) and Dgm
so
k (X⊤ ) are equal. By invoking Corollary 20, we obtain

DgmD
k (X) = DgmD

k (X⊤ ). ⊓3
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Proof of Proposition 41 Let δ ∈ R. For notational convenience, we write, for each
k ∈ Z+,

Dsi
δ := Dsi

δ,X Cδ
k := Ck(D

si
δ,X ) ∂δ

k := ∂δ
k : Cδ

k → Cδ
k−1

Dsi
δ,S := Dsi

δ,SX (z,z′) Cδ,S
k := Ck(D

si
δ,SX (z,z′)) ∂δ,S

k := ∂δ,S
k : Cδ,S

k → Cδ,S
k−1.

First note that pair swaps do not affect the entry of 0-simplices into the Dowker
filtration. More precisely, for any x ∈ X , we can unpack the definition of Rδ,X (Eq. 3)
to obtain:

[x] ∈ Dsi
δ ⇐⇒ ωX (x, x) ≤ δ ⇐⇒ ωz,z′

X (x, x) ≤ δ ⇐⇒ [x] ∈ Dsi
δ,S .

Thus for any δ ∈ R, we haveCδ
0 = Cδ,S

0 . Since all 0-chains are automatically 0-cycles,
we have ker(∂δ

0) = ker(∂δ,S
0 ).

Next we wish to show that im(∂δ
1) = im(∂δ,S

1 ) for each δ ∈ R. Let γ ∈ Cδ
1. We

first need to show the forward inclusion, i.e. that ∂δ
1(γ ) ∈ im(∂δ,S

1 ). It suffices to show
this for the case that γ is a single 1-simplex [x, x ′] ∈ Dsi

δ ; the case where γ is a linear
combination of 1-simplices will then follow by linearity. Let γ = [x, x ′] ∈ Dsi

δ for
x, x ′ ∈ X . Then we have the following possibilities:

(1) x ′′ ∈ X\{z, z′} is a δ-sink for [x, x ′].
(2) z (or z′) is the only δ-sink for [x, x ′], and x, x ′ /∈

{
z, z′

}
.

(3) z (or z′) is the only δ-sink for [x, x ′], and either x or x ′ belongs to
{
z, z′

}
.

(4) z (or z′) is the only δ-sink for [x, x ′], and both x, x ′ belong to
{
z, z′

}
.

In cases (1), (2), and (4), the (z, z′)-pair swap has no effect on [x, x ′], in the sense
that we still have [x, x ′] ∈ Dsi

δ,S . So [x ′]− [x] = ∂δ
1(γ ) = ∂δ,S

1 (γ ) ∈ im(∂δ,S
1 ). Next

consider case (3), and assume for notational convenience that [x, x ′] = [z, x ′] and z′

is the only δ-sink for [z, x ′]. By the definition of a δ-sink, we have ωX (z, z′) ≤ δ and
ωX (x ′, z′) ≤ δ. Notice that we also have:

[z, z′], [z′, x ′] ∈ Dsi
δ , with z′ as a δ-sink.

After the (z, z′)-pair swap, we still haveωz,z′
X (x ′, z′) ≤ δ, but possiblyωz,z′

X (z, z′) >
δ. So it might be the case that [z, x ′] /∈ Dsi

δ,S . However, we now have:

[z′, x ′] ∈ Dsi
δ,S, with z′ as a δ-sink, and

[z, z′] ∈ Dsi
δ,S, with z as a δ-sink.

Then we have:

∂δ
1(γ ) = ∂δ

1([z, x ′]) = x ′ − z = z′ − z + x ′ − z′

= ∂δ
1([z, z′])+ ∂δ

1([z′, x ′])
= ∂δ,S

1 ([z, z′])+ ∂δ,S
1 ([z′, x ′]) ∈ im(∂δ,S

1 ),
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where the last equality is defined because we have checked that [z, z′], [z′, x ′] ∈ Dsi
δ,S .

Thus im(∂δ
1) ⊆ im(∂δ,S

1 ), and the reverse inclusion follows by a similar argument.
Since δ ∈ R was arbitrary, this shows that im(∂δ

1) = im(∂δ,S
1 ) for each δ ∈ R.

Previously we had ker(∂δ
0) = ker(∂δ,S

0 ) for each δ ∈ R. It then follows that H0(D
si
δ ) =

H0(D
si
δ,S) for each δ ∈ R.

Next let δ′ ≥ δ ∈ R, and for any k ∈ Z+, let f
δ,δ′
k : Cδ

k → Cδ′
k , g

δ,δ′
k : Cδ,S

k → Cδ′,S
k

denote the chain maps induced by the inclusions Dsi
δ ↪→ Dsi

δ′,D
si
δ,S ↪→ Dsi

δ′,S . Since

Dsi
δ and Dsi

δ,S have the same 0-simplices at each δ ∈ R, we know that f δ,δ′
0 ≡ gδ,δ′

0 .

Let γ ∈ ker(∂δ
0) = ker(∂δ,S

0 ), and let γ + im(∂δ
1) ∈ H0(D

si
δ ). Then observe that

( f δ,δ′
0 )#(γ + im(∂δ

1)) = f δ,δ′
0 (γ )+ im(∂δ′

1 ) ( f δ,δ′
0 is a chain map)

= gδ,δ′
0 (γ )+ im(∂δ′

1 ) ( f δ,δ′
0 ≡ gδ,δ′

0 )

= gδ,δ′
0 (γ )+ im(∂δ′,S

1 ) ( im(∂δ′
1 ) = im(∂δ′,S

1 ))

= (gδ,δ′
0 )#(γ + im(∂δ,S

1 )). (gδ,δ′
0 is a chain map)

Thus ( f δ,δ′
0 )# = (gδ,δ′

0 )# for each δ′ ≥ δ ∈ R. Since we also have H0(D
si
δ ) =

H0(D
si
δ,S) for each δ ∈ R, we now apply the Persistence Equivalence Theorem (The-

orem 21) to conclude the proof. ⊓3

Appendix B: Higher dimensional Dowker persistence diagrams of
cycle networks

The contents of this section rely on results in Adamaszek and Adams (2017)
and Adamaszek et al. (2016). We introduce some minimalistic versions of defini-
tions from the referenced papers to use in this section. The reader should refer to these
papers for the original definitions.

Given a metric space (M, dM ) and m ∈ M , we will write B(m, ε) to denote a
closed ε-ball centered at m, for any ε > 0. For a subset X ⊆ M and some ε > 0, the
Čech complex of X at resolution ε is defined to be the following simplicial complex:

Č(X , ε) :=
{
σ ⊆ X : ∩x∈σ B(x, ε) ̸= ∅

}
.

In the setting of metric spaces, the Čech complex coincides with the Dowker source
and sink complexes. We will be interested in the special case where the underlying
metric space is the circle. We write S1 to denote the circle with unit circumference.
Next, for any n ∈ N, we write X n :=

{
0, 1

n ,
2
n , . . . ,

n−1
n

}
to denote the collection of

n equally spaced points on S1 with the restriction of the arc length metric on S1. Also
let Gn denote the n-node cycle network with vertex set X n (in contrast with X n , here
Gn is equipped with the asymmetric weights defined in Sect. 6.1). The connection
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between X n and Dowker complexes of the cycle networks Gn is highlighted by the
following observation:

Proposition 46 Let n ∈ N. Then for any δ ∈ [0, 1], we have Č(X n,
δ
2 ) = Dsi

nδ,Gn
.

The scaling factor arises because Gn has diameter ∼ n, whereas X n ⊆ S1 has
diameter∼ 1/2. This proposition provides a pedagogical step which helps us transport
results from the setting of Adamaszek and Adams (2017) and Adamaszek et al. (2016)
to that of the current paper.

Proof For δ = 0, both the Čech and Dowker complexes consist of the n vertices, and
are equal. Similarly for δ = 1, both Č(X n, 1) and Dsi

n,Gn
are equal to the (n − 1)-

simplex.
Nowsuppose δ ∈ (0, 1). Letσ ∈ Dsi

nδ,Gn
. Thenσ is of the form [ kn , k+1

n , . . . , ⌊k+nδ⌋
n ]

for some integer 0 ≤ k ≤ n − 1, where the nδ-sink is ⌊k+nδ⌋
n and all the numer-

ators are taken modulo n. We claim that σ ∈ Č(X n,
δ
2 ). To see this, observe

that dS1(
k
n ,

⌊k+nδ⌋
n ) ≤ δ, and so B( kn ,

δ
2 ) ∩ B( ⌊k+nδ⌋

n , δ
2 ) ̸= ∅. Then we have

σ ∈ ⋂nδ
i=0 B

(
⌊k+i⌋
n , δ

2

)
, and so σ ∈ Č(X n,

δ
2 ).

Now let σ ∈ Č(X n,
δ
2 ). Then σ is of the form [ kn , k+1

n , . . . , k+ j
n ] for some integer

0 ≤ k ≤ n − 1, where j is an integer such that j
n ≤ δ. In this case, we have

σ = X n ∩ j
i=0 B

( k+i
n , δ

)
. Then in Gn , after applying the scaling factor n, we have

σ ∈ Dsi
nδ,Gn

, with k+ j
n as an nδ-sink in Gn . This shows equality of the two simplicial

complexes. ⊓3

Theorem 47 (Theorem 3.5, Adamaszek et al. 2016) Fix n ∈ N, and let 0 ≤ k ≤ n− 2
be an integer. Then,

Č(X n,
k
2n ) ≃

{∨n−k−1 S2l if k
n = l

l+1 ,

S2l+1 or if l
l+1 < k

n < l+1
l+2 ,

for some l ∈ Z+. Here
∨

denotes the wedge sum, and ≃ denotes homotopy equiva-
lence.

Theorem 37 (Even dimension) Fix n ∈ N, n ≥ 3. If l ∈ N is such that n is divisible
by (l + 1), and k := nl

l+1 is such that 0 ≤ k ≤ n − 2, then DgmD
2l (Gn) consists of

precisely the point ( nl
l+1 ,

nl
l+1 + 1) with multiplicity n

l+1 − 1. If l or k do not satisfy the
conditions above, then DgmD

2l (Gn) is trivial.

Proof of Theorem 37 Let l ∈ N be such that (l + 1) divides n and 0 ≤ k ≤ n − 2.
Then Dsi

k,Gn
= Č(X n,

k
2n ) has the homotopy type of a wedge sum of (n − k − 1)

copies of S2l , by Theorem 47. Here the equality follows from Proposition 46. Notice
that n − k − 1 = n

l+1 − 1. Furthermore, by another application of Theorem 47, it

is always possible to choose ε > 0 small enough so that Dsi
k−ε,Gn

= Č(X n,
k−ε
2n )
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and Dsi
k+ε,Gn

= Č(X n,
k+ε
2n ) have the homotopy types of odd-dimensional spheres.

Thus the inclusions Dsi
k−ε,Gn

⊆ Dsi
k,Gn

⊆ Dsi
k+ε,Gn

induce zero maps upon passing
to homology. It follows that DgmD

2l (Gn) consists of the point ( nl
l+1 ,

nl
l+1 + 1) with

multiplicity n
l+1 − 1.

If l ∈ N does not satisfy the condition described above, then there does not exist an
integer 1 ≤ j ≤ n−2 such that j/n = l/(l+1). So for each 1 ≤ j ≤ n−2,Dsi

j,Gn
=

Č(X n,
j
2n ) has the homotopy type of an odd-dimensional sphere by Theorem 47, and

thus does not contribute to DgmD
2l (Gn). If l satisfies the condition but k ≥ n− 1, then

Č(X n,
k
2n ) is just the (n − 1)-simplex, hence contractible. ⊓3

Theorem 37 gives a characterization of the even dimensional Dowker persistence
diagrams of cycle networks. The most interesting case occurs when considering the
2-dimensional diagrams: we see that cycle networks of an even number of nodes have
an interesting barcode, even if the bars are all short-lived. For dimensions 4, 6, 8,
and beyond, there are fewer and fewer cycle networks with nontrivial barcodes (in
the sense that only cycle networks with number of nodes equal to a multiple of 4,
6, 8, and so on have nontrivial barcodes). For a complete picture, it is necessary to
look at odd-dimensional persistence diagrams. This is made possible by the next set
of constructions.

We have already recalled the definition of a Rips complex of a metric space. To
facilitate the assessment of the connection to Adamaszek and Adams (2017), we tem-
porarily adopt the notationVR(X , ε) to denote the Vietoris–Rips complex of a metric
space (X , dX ) at resolution ε > 0, i.e. the simplicial complex {σ ⊆ X : diam(σ ) ≤ ε}.
Theorem 48 (Theorem 9.3, Proposition 9.5, Adamaszek and Adams 2017) Let 0 <

r < 1
2 . Then there exists a map Tr : pow(S1) → pow(S1) and a map πr : S1 → S1

such that there is an induced homotopy equivalence

VR(Tr (X), 2r
1+2r )

≃−→ Č(X , r).

Next suppose X ⊆ S1 and let 0 < r ≤ r ′ < 1
2 . Then there exists a map η : S1 → S1

such that the following diagram commutes:

VR(Tr (X), 2r
1+2r ) VR(Tr ′(X), 2r ′

1+2r ′ )

Č(X , r) Č(X , r ′)

η

≃πr ≃πr ′

⊆

Theorem 49 Consider the setup of Theorem 48. If Č(X , r) and Č(X , r ′) are homotopy
equivalent, then the inclusion map between them is a homotopy equivalence.

Before providing the proof, we show how it implies Theorem 38.

Theorem 38 (Odd dimension) Fix n ∈ N, n ≥ 3. Then for l ∈ N, define Ml :={
m ∈ N : nl

l+1 < m < n(l+1)
l+2

}
. If Ml is empty, thenDgmD

2l+1(Gn) is trivial. Otherwise,
we have:
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DgmD
2l+1(Gn) =

{(
al ,

⌈
n(l+1)
l+2

⌉)}
,

where al := min {m ∈ Ml} . We use set notation (instead of multisets) to mean that
the multiplicity is 1.

Proof of Theorem 38 By Proposition 46 and Theorem 47, we know that Dsi
k,Gn

=
Č(X n,

k
2n ) ≃ S1 for integers 0 < k < n

2 . Let b ∈ N be the greatest integer less
than n/2. Then by Theorem 49, we know that each inclusion map in the following
chain is a homotopy equivalence:

Dsi
1,Gn

⊆ · · · ⊆ Dsi
b,Gn

= Dsi
⌈n/2⌉−,Gn

.

It follows that DgmD
1 (Gn) =

{(
1,

⌈ n
2

⌉)}
. The notation in the last equality means that

Dsi
b,Gn

= Dsi
δ,Gn

for all δ ∈ [b, b + 1), where b + 1 = ⌈n/2⌉.
In the more general case, let l ∈ N and let Ml be as in the statement of the result.

Suppose first that Ml is empty. Then by Proposition 46 and Theorem 47, we know
thatDsi

k,Gn
has the homotopy type of a wedge of even-dimensional spheres or an odd-

dimensional sphere of dimension strictly different from (2l + 1), for any choice of
integer k. Thus DgmD

2l+1(Gn) is trivial.
Next suppose Ml is nonempty. By another application of Proposition 46 and The-

orem 47, we know that Dsi
k,Gn

= Č(X n,
k
2n ) ≃ S2l+1 for integers nl

l+1 < k < n(l+1)
l+2 .

Write al := min {m ∈ Ml} and bl := max {m ∈ Ml}. Then by Theorem 49, we know
that each inclusion map in the following chain is a homotopy equivalence:

Dsi
al ,Gn

⊆ · · · ⊆ Dsi
bl ,Gn

= Dsi
⌈n(l+1)/(l+2)⌉−,Gn

.

It follows that DgmD
2l+1(Gn) =

{(
al ,

⌈
n(l+1)
l+2

⌉)}
. ⊓3

It remains to provide a proof of Theorem 49. For this, we need some additional
machinery.

Cyclicmaps andwinding fractions We introduce some more terms from Adamaszek
and Adams (2017), but for efficiency, we try to minimize the scope of the definitions to
only what is needed for our purpose. Recall that we write S1 to denote the circle with
unit circumference. Thus we naturally identify any x ∈ S1 with a point in [0, 1). We
fix a choice of 0 ∈ S1, and for any x, x ′ ∈ S1, the length of a clockwise arc from x to
x ′ is denoted by

−→
dS1(x, x

′). Then, for any finite subset X ⊆ S1 and any r ∈ (0, 1/2),
the directed Vietoris–Rips graph

−→
VR(X , r) is defined to be the graph with vertex set

X and edge set {(x, x ′) : 0 <
−→
dS1(x, x

′) < r}. Next, let −→G be a Vietoris–Rips graph
such that the vertices are enumerated as x0, x1, . . . , xn−1, according to the clockwise
order in which they appear. A cyclic map between

−→
G and a Vietoris–Rips graph

−→
H is

a map of vertices f such that for each edge (x, x ′) ∈ −→
G , we have either f (x) = f (x ′),

or ( f (x), f (x ′)) ∈ −→
H , and

∑n−1
i=0

−→
dS1( f (xi ), f (xi+1)) = 1. Here xn := x0.
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Next, the winding fraction of a Vietoris–Rips graph
−→
G with vertex set V (

−→
G ) is

defined to be the infimum of numbers k
n such that there is an order-preserving map

V (
−→
G ) → Z/nZ such that each edge is mapped to a pair of numbers at most k apart.

A key property of the winding fraction, denoted wf, is that if there is a cyclic map
between Vietoris–Rips graphs

−→
G → −→

H , then wf(
−→
G ) ≤ wf(

−→
H ).

Theorem 50 (Corollary 4.5, Proposition 4.9, Adamaszek and Adams 2017) Let X ⊆
S1 be a finite set and let 0 < r < 1

2 . Then,

VR(X , r) ≃
{
S2l+1 : l

2l+1 < wf(
−→
VR(X , r)) < l+1

2l+3 for some l ∈ Z+,∨ j S2l : wf(−→VR(X , r)) = l
2l+1 , for some j ∈ N.

Next let X ′ ⊆ S1 be another finite set, and let r ≤ r ′ < 1
2 . Suppose f : −→VR(X , r) →

−→
VR(X ′, r ′) is a cyclicmapbetweenVietoris–Rips graphs and l

2l+1 < wf(
−→
VR(X , r)) ≤

wf(
−→
VR(X ′, r ′)) < l+1

2l+3 . Then f induces a homotopy equivalence between VR(X , r)
and VR(X ′, r ′).

We now have the ingredients for a proof of Theorem 49.

Proof of Theorem 49 Since the maps πr and πr ′ induce homotopy equivalences, it
follows that

VR(Tr (X), 2r
1+2r ) ≃ VR(Tr ′(X), 2r ′

1+2r ′ ).

By the characterization result in Theorem 50, we know that there exists l ∈ Z+ such
that

l
2l+1 < wf(

−→
VR(Tr (X), 2r

1+2r )) ≤ wf(
−→
VR(Tr ′(X), 2r ′

1+2r ′ )) <
l+1
2l+3 .

The map η in Theorem 48 appears in (Adamaszek and Adams 2017, Proposition 9.5)
through an explicit construction. Moreover, it is shown that η induces a cyclic map
wf(

−→
VR(Tr (X), 2r

1+2r )) → wf(
−→
VR(Tr ′(X), 2r ′

1+2r ′ )). Thus by Theorem 50, η induces

a homotopy equivalence between VR(Tr (X), 2r
1+2r ) and VR(Tr ′(X), 2r ′

1+2r ′ ). Finally,

the commutativity of the diagram in Theorem 48 shows that the inclusion Č(X , r) ⊆
Č(X , r ′) induces a homotopy equivalence. ⊓3

Remark 51 The analogue of Theorem 49 for Čech complexes appears as Proposi-
tion 4.9 of Adamaszek and Adams (2017) for Vietoris–Rips complexes. We prove
Theorem 49 by connecting Čech and Vietoris–Rips complexes using Proposition 9.5
of Adamaszek and Adams (2017). However, as remarked in §9 of Adamaszek and
Adams (2017), one could prove Theorem 49 directly using a parallel theory of wind-
ing fractions for Čech complexes.
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