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Abstract—Single linkage hierarchical clustering is a tool in
unsupervised learning which has been fully characterized for
finite metric spaces, but not for the unrestricted setting of general
networks. We follow a recent line of work to complete the
characterization for general networks, and moreover, we provide
quantitative bounds on how much information is lost when
applying our method to network data. These bounds are novel
even in the setting of finite metric spaces. Finally, we propose a
construction called a treegram that provides a visual summary
of the result of applying our method to a network data set.

I. INTRODUCTION

When faced with the difficult computational task of analyz-
ing a complex network, a first approach is to perform some
sort of exploratory data analysis. Ideally, this analysis would
also lead to a reasonably faithful representation of the network
that is easy to visualize. Networks are often most appropriately
represented by adjacency matrices, and depending on the
method of acquiring data, these matrices may initially be
weighted and/or asymmetric. In practice, many methods of
analyzing these matrices require a preprocessing step where
additional structure is imposed on the matrices. For example,
directed networks are often symmetrized to obtain symmetric
n×n matrices with real valued entries, for which the spectral
theorem guarantees a full set of eigenvalues that can inform
the properties of dynamic processes running on the network.
However, imposing any condition in the preprocessing step
leads to a loss of data, which is undesirable. We propose a
method that accepts any square matrix (possibly asymmetric)
with real-valued entries as input, thus avoiding this data loss.

We adhere to the viewpoint [1]–[3] of looking at an n-point
network as a (suitably generalized) n-point metric space. One
motivation for this viewpoint is that in the simple case of
networks endowed with the shortest path distance, we have a
bona fide metric space, and are free to use data simplification
techniques applicable to metric spaces. The other justification,
which we know a posteriori, is that some of the data anal-
ysis methods that hold for metric spaces can be adequately
extended to the most general networks, i.e. n× n real valued
matrices. More specifically, in this paper we study an extension
of the single linkage hierarchical clustering method (SLHC).
In its classical form, SLHC takes a finite metric space as
input and returns an ultrametric space on the same set of
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points—a space for which the strong triangle inequality holds.
Such an ultrametric space has the highly desirable property of
having a faithful visual representation—specifically, it can be
represented by a rooted tree called a dendrogram.

The Network SLHC (nSLHC) method that we study is an
extension of a directed SLHC method that was established in
[2] to study dissimilarity networks. The nSLHC method re-
turns networks satisfying the strong triangle inequality, which
we call ultranetworks. By applying a symmetrization step to
an ultranetwork, we are able to recover a certain generalization
of a dendrogram, which we call a treegram.

We emphasize the following caveat: A treegram is only as
good as the ultranetwork it represents. To make a treegram
practically useful, one needs quantitative guarantees on how
much data is lost when obtaining an ultranetwork from a given
network. We interpret this “data loss” as the `∞ distortion
between a network and its ultranetwork representation. The
main result in our work is a bound on this distortion that
depends only on the number of points in the network and
a network dependent quantity that we call the ultranetwork
constant of a network. By controlling this quantity, it is
possible to control the distortion induced by nSLHC.

While searching the literature to see how our bound com-
pared with the ones known for classical SLHC, we were
surprised to find that no such bound appears to exist even in
the case of metric spaces. Because our nSLHC method reduces
to standard SLHC on metric spaces, we thus obtain a novel
estimation of the “goodness-of-fit” of a dendrogram produced
by single linkage to the underlying metric space.

Proofs, additional figures, and a movie can be found in [4].

II. PRELIMINARIES

Recall that a finite metric space (X, dX) is a finite set X
together with a function dX : X × X → R+ such that: (1)
dX(x, x′) = 0 ⇐⇒ x = x′, (2) dX(x, x′) = dX(x′, x), and
(3) dX(x, x′) ≤ dX(x, x′′)+dX(x′′, x′) for any x, x′, x′′ ∈ X .

An ultrametric space (X,uX) is a metric space satisfying
the additional condition called strong triangle inequality:

uX(x, x′) ≤ max(uX(x, x′′), uX(x′′, x′)), ∀x, x′, x′′ ∈ X.
(1)

The benefit of working with ultrametric spaces is that they
can naturally be visualized as dendrograms. Given a finite set
X , a dendrogram over X is a nested set of partitions D(t)
indexed by a resolution parameter t ≥ 0, such that all points
of X are clustered into singletons at t = 0, and into a single
cluster for all t greater than some tF . Because the partitions
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are nested, once any two points merge into a cluster, they stay
clustered together for all larger values of t. A useful result is
that one may induce a dendrogram from an ultrametric, and
vice versa, without losing any data [5], [6].

We define a network (X,ωX) to be a finite set X together
with a weight function ωX : X × X → R. We will refer to
the points of X as nodes and the images of ωX as weights.
Note that none of the metric properties are assumed; a priori, a
network has no more structure than a generic n×n matrix with
real entries. The collection of all networks will be denoted N .

We will eventually be interested in the subclass of networks
that satisfy the strong triangle inequality. We call these the
family of ultranetworks, denoted Nult. Another interesting
family is that of symmetric networks, denoted N sym. The
family of symmetric ultranetworks will be denoted N sym

ult .
Finally, there is the class of dissimilarity networks, denoted
N dis, consisting of networks (X,ωX) where ωX takes values
in the nonnegative reals and ωX(x, x′) = 0 for any x, x′ ∈ X
if and only if x = x′.

A. Hierarchical clustering methods and ultrametrics

In the setting of finite metric spaces, hierarchical clustering
(HC) is a well-established method for representing complex
data as a dendrogram that is easy to visualize and interpret.
In particular, HC methods are heavily used in both data pre-
processing and exploratory data analysis [7]. In recent years,
numerous advances have been made towards formalizing the
theory behind these methods. An axiomatic approach to clus-
tering finite metric spaces has been put forward in [8], and
further explored in [3], [6], [9], [10]. The stability of HC
methods under small perturbations to the input data has been
studied in [6], [11].

Within the axiomatic frameworks of [3], [6], [9], it has been
established that in the context of finite metric spaces and dis-
similarity networks, single linkage is the unique “appropriate”
method for hierarchical clustering. Thus we limit our attention
to SLHC in this paper.

III. THE NETWORK SLHC METHOD

Given a network (X,ωX), we define a new weight function
ωX : X ×X → R as follows:

ωX(x, x′) := max (ωX(x, x), ωX(x, x′), ωX(x′, x′)) ,

for x, x′ ∈ X . We define a chain from x to x′ as an ordered
set of points starting at x and reaching x′:

c = {x0, x1, x2, . . . , xn : x0 = x, x1 = x′, xi ∈ X for all i} .

The collection of all chains joining x and x′ will be denoted
CX(x, x′). We define the cost of a chain c ∈ CX(x, x′)
as follows: costX(c) := maxxi,xi+1∈c ωX(xi, xi+1). The
minimum chain cost uHX on X ×X is defined by:

uHX(x, x′) := min
c∈CX(x,x′)

costX(c).

By directly appealing to the definition we obtain:
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Fig. 1: Effect of applying H to a two-node network. Notice
that the resulting network retains its asymmetry, as well as the
weights of the self-loops.
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Fig. 2: The figure shows a network (X,ωX) and its nSLHC
output (X,uHX). Notice that ult(X,ωX) = ΨX(a, c, b) = 2,
and ult(X,uHX) = 0. Here ult refers to the ultranetwork
constant defined in §III-B.

Proposition 1. For any network (X,ωX), the minimum chain
cost uHX satisfies the strong triangle inequality.

We now define the network single linkage hierarchical
clustering method (nSLHC) H : N → Nult by:

H(X,ωX) := (X,uHX).

The effect of H on a simple two-node network is illustrated
in Figure 1. The interaction of the method H with different
input data is illustrated in Figure 2.

A. Stability and Characterization

For a data simplification method such as nSLHC to be
practically useful, it needs to be stable in the following
sense: small perturbations in the input data should result in
small changes in the output. nSLHC enjoys the following
quantitative stability property:

Theorem 2. Let X be a finite set and let ω1 and ω2 be two
different weight functions defined on X×X . Write (X,uH1 ) :=
H(X,ω1) and (X,uH2 ) := H(X,ω2). Then we have:

‖uH1 − uH2 ‖`∞(X×X) ≤ ‖ω1 − ω2‖`∞(X×X).

In analogy with dissimilarity networks [2], we are able to
prove the following properties of nSLHC:

Proposition 3 (Property A1). For the two-point net-
work (X,ωX) = ({p, q} ,

( α γ
δ β

)
), we have H(X,ωX) =

({p, q} ,
(
α Γ
∆ β

)
), where Γ = max {α, β, γ} and ∆ =

max {α, β, δ} . This situation is illustrated in Figure 1.
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Proposition 4 (Property A2). If φ : X → Y satisifies
ωX(x, x′) ≥ ωY (φ(x), φ(x′)) for all x, x′ ∈ X, then we
also have uHX(x, x′) ≥ uHY (φ(x), φ(x′)) for all x, x′ ∈ X.

In particular, we are able to prove the following character-
ization result for nSLHC: if a method of producing ultranet-
works satisfies Properties A1-2, then its output ultranetworks
are exactly the output ultranetworks of nSLHC. This result
was previously known only for dissimilarity networks [2]. The
properties of nSLHC that we establish in the next few sections,
namely error bounds and visualization via treegrams, are our
main contributions to the existing literature.

B. The ultranetwork constant and Error Bounds

Given a network (X,ωX), consider the following function:

ΨX(x1, x2, x3) := ωX(x1, x3)−max
(
ωX(x1, x2), ωX(x2, x3)

)
,

which measures for the three points x1, x2, x3 ∈ X the failure
to satisfy the strong triangle inequality (1) in the triangle they
define. We now define:

ult(X) := max
x1,x2,x3∈X

ΨX(x1, x2, x3),

and refer to this quantity as the ultranetwork constant of the
network X . It measures the deviation of a network from sat-
isfying the strong triangle inequality, and is a crucial quantity
that we propose and study in this paper. A simple but important
observation is that any ultranetwork X has ult(X) = 0, and
furthermore, if a network X has ult(X) = 0 then X is actually
an ultranetwork. In Figure 2, we illustrate a network with
positive ultranetwork constant and its nSLHC output.

The main theorem of this paper is the following bound on
the distortion to ωX caused by the nSLHC method:

Theorem 5. For any n-point network (X,ωX) ∈ N , we have:

‖ωX − uHX‖`∞(X×X) ≤ log2(2n) ult(X).

Moreover, this bound is asymptotically tight.

We first observe that the ultranetwork constant of any
network can be easily computed by just considering all triples
of points in the space. Intuitively, spaces which “almost”
satisfy the strong triangle inequality are already close to being
ultranetworks, and an application of Theorem 5 shows that
applying nSLHC to such networks does, in fact, cause only
small distortion. A particularly useful application is in the
setting of metric spaces, where one now has a simple answer
to the question “How much loss does my metric dataset incur
when represented by a dendrogram”—by Theorem 5, this
quantity can be estimated by a function on just the set of
triangles in the dataset.

Sketch of proof. Let x, x′′ ∈ X and suppose we have a chain
c = {x, x′, x′′} joining x and x′′ with minimal chain cost.
Then by unpacking the definition of ultrametricity, we have
|ωX(x, x′′)−uHX(x, x′′)| ≤ ult(X). By induction, one proves
that a minimal cost chain of length 2k + 1 would admit an

inequality of the form |ωX(x, x′′) − uHX(x, x′′)| ≤ k ult(X).
But the maximal length of any chain (possibly with some
repetition) can be bounded by 2log2(2n) + 1, leading to the
inequality |ωX(x, x′′)−uHX(x, x′′)| ≤ log2(2n) ult(X). Tight-
ness can be proved even in the setting of metric spaces: we
are able to construct a sequence of finite metric spaces that
realizes the logarithmic error rate.

IV. TREEGRAMS AND RELATED METHODS

Because exploratory data analysis is one of the main appli-
cations of nSLHC, one desirable feature would be a visual-
ization that summarizes the output and is easy to interpret. In
classical SLHC, the output is a dendrogram, and because den-
drograms are easy to visualize and interpret, one would hope
for a similar construction in the setting of networks. However,
there is a fundamental inconsistency in this expectation: a
network is assumed to be asymmetric, whereas a dendrogram
is symmetric, so any method that produces a dendrogram-like
structure from a network must pass through a symmetrization
step. Numerous choices are possible for this step. In this paper
we proceed as follows: Define the max-symmetrization map
S : N → N sym by: S(X,ωX) = (X, ω̃X), where

ω̃X(x, x′) = max(ωX(x, x′), ωX(x′, x)) for all x, x′ ∈ X.

Notice that one may decide to symmetrize the network
first and then apply nSLHC, or apply nSLHC first and then
symmetrize the output. This apparent dichotomy leads to meth-
ods analogous to the reciprocal and nonreciprocal clustering
methods described in [3]; further choices can be made to
obtain methods that interpolate between these extremes. For
the purposes of this paper we restrict ourselves to the case
where symmetrization is applied after applying nSLHC. The
motivation behind using this method is that it is truly sensi-
tive to asymmetry, in contrast to the alternative of applying
the symmetrization step first. To be more precise, consider
(X,ωX) in Figure 2, and suppose the edge weights between
nodes a and c were swapped. Applying the symmetrization
first would nullify the effect of this swap, whereas applying
nSLHC first would fully capture this effect.

Let T = S ◦ H : N → N sym
ult denote the method obtained

by first applying nSLHC and then symmetrizing the output.

A. Treegrams

We now construct a tree structure that faithfully represents
the symmetric ultranetworks that occur as an output of the
method T = S ◦H. We call this construction a treegram, and
illustrate its appearance in Figure 3. We urge the reader to
view the figure before the formal definition.

Recall that given a finite set X a partition of X is any
collection P = {B1, . . . , Bk} where each Bi is a subset
of X referred to as a block or cluster of the partition P .
Different blocks of P also need to be disjoint: for i 6= j one
has Bi ∩ Bj = ∅, and the totality of the blocks must cover
X completely: ∪ki=1Bk = X . From now on, for a finite set
X we denote by Part(X) the set of all partitions of X . In
order to keep track of partial clustering information, we also
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Fig. 3: The figure on the left is a graphical representation of a treegram TX . Notice that for t < t1, Xt = ∅. For example,
for t ∈ [t2, t3), Xt = {x1, x2} and Pt = {{x1}, {x2}}. Also, for example for t ∈ [t7, t8), Xt = {x1, x2, x3, x4, x5} and
Pt = {{x1, x2}, {x3}, {x4, x5}}. The figure on the right is the corresponding symmetric ultranetwork uTX

. Note that uTX
can

be read off of TX , and TX can be reconstructed from uTX
.

consider sub-partitions of a finite set X: these will be pairs
(X ′, P ′) where X ′ ⊆ X and P ′ ∈ Part(X ′). We denote by
SubPart(X) the set of all sub-partitions of X .

We will use the following simple fact: if A′ ⊂ A are sets and
P ∈ Part(A), then the restricted partition P |A′ :=

⋃
B∈P B∩

A′ is a partition of A′.

Definition 1. Let X be a finite set. A treegram over X is a
function TX : R −→ SubPart(X) such that if for each t ∈ R
we write TX(t) = (Xt, Pt) then

1) (hierarchy) For t′ ≥ t, Xt ⊆ Xt′ and Pt′ |Xt
is coarser

than Pt.
2) ∃tF ∈ R such that for all t ≥ tF , Xt = X and Pt is

the one block partition of X .
3) ∃tI ∈ R such that Xt is empty for all t < tI .
4) (right continuity) For all t ∈ R there exists ε > 0 such

that TX(t′) = TX(t) for all t′ ∈ [t, t+ ε].

The definition is analogous but strictly more general than
that of dendrograms [6]. The parameter t is referred to as
resolution. Conditions 2 and 3 are called boundary conditions,
and they specify the resolutions at which all the nodes of
X are clustered together, and at which we only have the
empty cluster. Condition 1 (hierarchy) emphasizes that as
the resolution t increases, clusters can only be combined,
not separated. Finally, we remark that the condition of right
continuity is used to satisfy a technical condition in the proof
of Theorem 6 below.

Consider as an example the treegram illustrated in Figure 3.
In this case, the boundary conditions are tI = t1 and tF = t9.
In the case of a standard dendrogram [5], all the points in
the set appear simultaneously as singletons at the initial time
tI = 0. Treegrams are more general and in the example in
Figure 3 we see the appearance of new nodes as far as t5.
The hierarchical structure is particularly easy to see from the
figure; also note that nodes can only be combined (and not
separated) as t increases.

In what follows, we explain how to obtain treegrams from
symmetric ultranetworks, and vice versa.

From symmetric ultranetworks to treegrams. Let (X,uX) be

a symmetric ultranetwork. For each t ∈ R let Rt = {(x, x′) ∈
X × X : uX(x, x′) ≤ t}. Then let Xt = π1(Rt) = π2(Rt),
where π1 and π2 are projections onto the first and second
coordinates. Note that the last inequality follows because uX
is symmetric. If Xt 6= ∅, consider the relation ∼t on Xt

defined as follows: x ∼t x′ ⇐⇒ (x, x′) ∈ Rt. One can
verify that ∼t is a valid equivalence relation on Xt.

Now we have for each t ∈ R a possibly empty set Xt

together with (a possibly empty) equivalence relation ∼t on
the set. This is equivalent to saying that for each t ∈ R we
have a pair (Xt, Pt) where Pt ∈ Part(Xt) is the partition
induced by ∼t. So we set TX(t) = (Xt, Pt).

Notice that if t′ ≥ t, then Rt′ ⊇ Rt by definition, and
so Xt′ ⊇ Xt as well. Then it follows that Pt′ |Xt

is coarser
than Pt. Thus the process described above defines a map from
symmetric ultranetworks to treegrams, given by uX 7→ TX .

It is also possible to define a lossless map from treegrams
into ultranetworks. Details are posted in [4].

Theorem 6. Any symmetric ultranetwork has a lossless re-
alization as a treegram, and any treegram has a lossless
realization as a symmetric ultranetwork.

By virtue of this theorem, we have a completely faithful
visual representation of symmetric ultranetworks.

V. AN APPLICATION TO A SOCIAL NETWORK

Scenario: Assume n new teachers A1, · · ·An move to a city
Ω ⊂ R2 at different locations at different times t1, · · · , tn. We
model the initial locations as independent random variables
uniformly distributed in Ω, and model the tis as independent
random variables with exponential distribution and common
mean TI > 0. The joint movement of the different teachers
inside the city Ω is modeled as n independent random walks
each respecting the initial conditions above. When two teach-
ers Ai and Aj find themselves within a distance R > 0 of
each other, they will attempt to exchange contact information,
which we model as two independent processes with probability
α ∈ [0, 1] for taking place: Ai will attempt to establish a one-
directional link with Aj , and Aj will attempt to establish a
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one-directional link with Ai. The process runs from time 0 to
a final time T > 0. Parameter α should be interpreted as an
average “sociability” measure for the cohort of teachers.

Let A = {1, . . . , n}. Then, by keeping track of the his-
tory of pairwise of interactions between teachers, a network
(A, ωA) consisting of exactly one node per teacher is defined
where for i, j ∈ A with i 6= j the weight ωA(i, j) is set to be
as the first time the one directional link i→ j alluded to above
is established. Diagonal weights are defined as ωA(i, i) = ti.
Informally, this network represents the grapevine through
which colleagues can talk about their jobs, relay news, express
successes and failures, and gain social recognition.

Goal: To detect the first time τ = τ(Ω, n, T, TI , R, α) when
the network of teachers is able to relay a “message through
the grapevine” from any node i0 to any other node j0.

Procedure: For any given realization of the underlying
stochastic process the goal can be accomplished by first
applying the method T to (A, ωA) to obtain the symmet-
ric ultranetwork (A, uTA); then the value of τ is equal to
τ∗ := maxi,j u

T
A(i, j).

Indeed, imagine that for some δ ≥ 0 teachers Ai and Aj
are such that uTA(i, j) ≤ δ. Then, by the definition of T ,
this means that both uHA(i, j) ≤ δ and uHA(j, i) ≤ δ. Now,
from the definition of H it follows that there exist chains
c ∈ C(i, j) and c′ ∈ C(j, i) with total chains costs not
larger than δ. Consider what this means in the context of
our application. Take c; the fact that costA(c) ≤ δ means
that any two consecutive points ip and ip+1 in c (which are
indices of teachers in A) are such that the link ip → ip+1 was
established at time ≤ δ. Since this is true for all consecutive
pairs in c, it means that by broadcasting a message at time
δ, teacher Ai can reach teacher Aj . By analyzing the chain
c′ one can similarly conclude that by time δ teacher Aj can
send a message to teacher Ai by relying on colleagues along
the chain c′. Finally, it follows that when δ = τ∗, for any pair
of teachers Ai and Aj it is possible to find two chains joining
them with cost at most τ∗. By tracing definitions, one can see
that τ∗ is the first time this event can happen. Note that this
may be a much smaller value than the first time when any
pair of teachers can trade messages directly, which is what we
would get by simply symmetrizing the original network.

Results: We considered Ω as a square grid-like discretization
of [0, 1] × [0, 1] consisting of 21 equidistant points in each
direction. Any point not on the boundary of the grid was
connected to all 8 neighbors.. The random walk on the
resulting graph was coded in matlab. We carried a simulation
where n ∈ {5, 6, 7, . . . , 50}, R ∈ {0.06, 0.07, . . . , 0.5},
TI ∈ {20, 100}, and α = {0.1, 0.2, . . . , 1}. For each of the
4 parameters the corresponding value of τ was averaged over
50 repetitions. An example treegram together with results and
interpretation are shown in Figure 4. Results corresponding
to other combinations of parameters, and a movie with the
trajectory corresponding to the treegram in the figure can be
viewed at [4].

 5 13 11  6  2 18 12 20 10  7  9 15  1  4  8 14  3 16 17 19

20

40

60

80

100

120

tim
e

people

 n = 20
 α = 0.1
 R = 0.06
 Ti = 20

Fig. 4: Top left: Grid of discretization of [0, 1] × [0, 1]. Top
right: Treegram corresponding to parameters n = 20, α =
0.1, R = 0.06, TI = 20. Bottom: Plots of contour lines for τ
as a function of n and α for two different values of R. The
value of TI was fixed at 20. Note that whereas for the smaller
value R = 0.06 both an increase in n and α contribute to a
decrease of τ , for R = 0.15 the dominant parameter is n.
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